
	
	
Operation	TunnelSnake	
Mark	Lechtik	06	May	2021	
	

Windows	rootkits,	especially	those	operating	in	kernel	space,	are	pieces	of	malware	
infamous	for	their	near	absolute	power	in	the	operating	system.	Usually	deployed	as	drivers,	
such	implants	have	high	privileges	in	the	system,	allowing	them	to	intercept	and	potentially	
tamper	with	core	I/O	operations	conducted	by	the	underlying	OS,	like	reading	or	writing	to	
files	or	processing	incoming	and	outgoing	network	packets.	The	capability	to	blend	into	the	
fabric	of	the	operating	system	itself,	much	like	security	products	do,	is	the	quality	that	earns	
rootkits	their	notoriety	for	stealth	and	evasion.	

Having	said	that,	the	successful	deployment	and	execution	of	a	rootkit	component	in	
Windows	has	become	a	difficult	task	over	the	years.	With	Microsoft’s	introduction	of	Driver	
Signature	Enforcement,	it	has	become	harder	(though	not	impossible)	to	load	and	run	new	
code	in	kernel	space.	Even	then,	other	mechanisms	such	as	Kernel	Patch	Protection	(also	
known	as	PatchGuard)	make	it	hard	to	tamper	with	the	system,	with	every	change	in	a	core	
system	structure	potentially	invoking	the	infamous	Blue	Screen	of	Death.	

Consequently,	the	number	of	Windows	rootkits	in	the	wild	has	decreased	dramatically,	with	
the	bulk	of	those	still	active	often	being	leveraged	in	high	profile	APT	attacks.	One	such	
example	came	to	our	attention	during	an	investigation	last	year,	in	which	we	uncovered	a	
formerly	unknown	Windows	rootkit	and	its	underlying	cluster	of	activity.	We	observed	this	
rootkit	and	other	tools	by	the	threat	actor	behind	it	being	used	as	part	of	a	campaign	we	
dubbed	‘TunnelSnake’,	conducted	against	several	prominent	organizations	in	Asia	and	
Africa.	

In	this	blog	post	we	will	focus	on	the	following	key	findings	that	came	up	in	our	
investigation:	

• A	newly	discovered	rootkit	that	we	dub	‘Moriya’	is	used	by	an	unknown	actor	to	
deploy	passive	backdoors	on	public	facing	servers,	facilitating	the	creation	of	a	
covert	C&C	communication	channel	through	which	they	can	be	silently	controlled;	

• The	rootkit	was	found	on	networks	of	regional	diplomatic	organizations	in	Asia	and	
Africa,	detected	on	several	instances	dating	back	to	October	2019	and	May	2020,	
where	the	infection	persisted	in	the	targeted	networks	for	several	months	after	each	
deployment	of	the	malware;	

• We	observed	an	additional	victim	in	South	Asia,	where	the	threat	actor	deployed	a	
broad	toolset	for	lateral	movement	along	with	the	rootkit,	including	a	tool	that	was	
formerly	used	by	APT1.	Based	on	the	detection	timestamps	of	that	toolset,	we	assess	
that	the	attacker	had	a	foothold	in	the	network	from	as	early	as	2018;	

• A	couple	of	other	tools	that	have	significant	code	overlaps	with	Moriya	were	found	as	
well.	These	contain	a	user	mode	version	of	the	malware	and	another	driver-based	
utility	used	to	defeat	AV	software.	

We	provided	information	about	this	operation	in	our	threat	intelligence	portal	in	August	
2020.	More	details	and	analysis	are	available	to	customers	of	our	private	APT	reporting	
service.	For	more	details	contact:	intelreports@kaspersky.com.	

What	is	the	Moriya	rootkit	and	how	does	it	work?	

Our	investigation	into	the	TunnelSnake	campaign	started	from	a	set	of	alerts	from	our	
product	on	a	detection	of	a	unique	rootkit	within	the	targeted	networks.	Based	on	string	
artefacts	within	the	malware’s	binaries,	we	named	this	rootkit	Moriya.	This	tool	is	a	passive	
backdoor	which	allows	attackers	to	inspect	all	incoming	traffic	to	the	infected	machine,	filter	
out	packets	that	are	marked	as	designated	for	the	malware	and	respond	to	them.	This	forms	
a	covert	channel	over	which	attackers	are	able	to	issue	shell	commands	and	receive	back	
their	outputs.	

The	rootkit	has	two	traits	that	make	it	particularly	evasive.	The	packet	inspection	happens	
in	kernel	mode	with	the	use	of	a	Windows	driver,	allowing	attackers	to	drop	the	packets	of	
interest	before	they	are	processed	by	the	network	stack,	thus	ensuring	they	are	not	detected	
by	security	solutions.	Secondly,	the	fact	that	the	rootkit	waits	for	incoming	traffic	rather	
than	initiating	a	connection	to	a	server	itself,	avoids	the	need	to	incorporate	a	C&C	address	
in	the	malware’s	binary	or	to	maintain	a	steady	C&C	infrastructure.	This	hinders	analysis	
and	makes	it	difficult	to	trace	the	attacker’s	footprints.	

The	figure	below	illustrates	the	structure	of	the	rootkit’s	components.	They	consist	of	a	
kernel	mode	driver	and	a	user	mode	agent	that	deploys	and	controls	it.	In	the	following	
sections	we	will	break	down	each	of	these	components	and	describe	how	they	operate	to	
achieve	the	goal	of	tapping	into	the	target’s	network	communication	and	blending	in	its	
traffic.	

	

Fig.	1.	The	architecture	of	the	Moriya	rootkit	

User	mode	agent	analysis	

The	user	mode	component	of	the	Moriya	rootkit	has	two	purposes.	One	is	to	deploy	the	
kernel	mode	component	of	the	malware	on	the	machine	and	the	other	is	to	leverage	the	
covert	communication	channel	created	by	it	to	read	shell	commands	sent	from	the	C&C	
server	to	the	compromised	machine	and	to	respond	to	them.	Since	Moriya	is	a	passive	
backdoor	intended	to	be	deployed	on	a	server	accessible	from	the	internet,	it	contains	no	
hardcoded	C&C	address	and	relies	solely	on	the	driver	to	provide	it	with	packets	filtered	
from	the	machine’s	overall	incoming	traffic.	

The	first	order	of	business	for	the	attacker	when	using	Moriya	is	to	gain	persistence	on	the	
targeted	computer.	For	this	purpose,	the	user	mode	agent’s	DLL	contains	an	export	function	
named	Install,	which	is	intended	to	create	a	service	named	ZzNetSvc	with	the	description	
‘Network	Services	Manager’	and	start	it.	In	turn,	the	path	to	the	user	mode	agent’s	image	is	
set	to	the	registry	key	
HKLM\System\CurrentControlSet\Services\ZzNetSvc\Parameters\ServiceDll	so	that	it	will	
be	invoked	from	its	ServiceMain	export	each	time	the	service	is	initiated.	

Next,	after	the	service	is	started,	the	agent	will	attempt	to	load	the	rootkit’s	driver	into	the	
system.	Its	binary	is	bundled	as	two	driver	images	within	the	DLL’s	resource	section,	
corresponding	to	32-	and	64-bit	architectures,	while	in	reality	only	one	of	them	is	written	to	
disk.	In	the	cases	we	analyzed,	the	agent	DLLs	were	compiled	for	64-bit	systems,	dropping	a	
64-bit	driver	to	the	drivers	directory	in	the	system	path,	under	the	name	
MoriyaStreamWatchmen.sys,	hence	the	rootkit’s	name.	

	

Fig.	2.	Code	that	writes	the	Moriya	driver	to	disk	

The	agent	uses	a	known	technique	whereby	the	VirtualBox	driver	(VBoxDrv.sys)	is	
leveraged	to	bypass	the	Driver	Signature	Enforcement	mechanism	in	Windows	and	load	
Moriya’s	unsigned	driver.	DSE	is	an	integrity	mechanism	mandating	that	drivers	are	
properly	signed	with	digital	signatures	in	order	for	them	to	be	loaded,	which	was	introduced	
for	all	versions	of	Windows	starting	from	Vista	64-bit.	The	technique	used	to	bypass	it	was	
seen	in	use	by	other	threat	actors	like	Turla,	Lamberts	and	Equation.	

Moriya’s	user	mode	agent	bypasses	this	protection	with	the	use	of	an	open-source	
code[1]	named	DSEFIX	v1.0.	The	user	agent	dumps	an	embedded	VBoxDrv.sys	image	of	
version	1.6.2	to	disk	and	loads	it,	which	is	then	used	by	the	aforementioned	code	to	map	
Moriya’s	unsigned	driver	to	kernel	memory	space	and	execute	it	from	its	entry	point.	These	
actions	are	made	possible	through	IOCTLs	implemented	in	VBoxDrv.sys	that	allow	writing	
to	kernel	address	space	and	executing	code	from	it.	Throughout	this	process,	the	bypass	
code	is	used	to	locate	and	modify	a	flag	in	kernel	space	named	g_CiOptions,	which	controls	
the	mode	of	enforcement.	

After	the	unsigned	driver	is	loaded,	the	agent	registers	a	special	keyword	that	is	used	as	a	
magic	value,	which	will	be	sought	in	the	first	bytes	of	every	incoming	packet	passed	on	the	
covert	channel.	This	allows	the	rootkit	to	filter	marked	packets	and	block	them	for	any	
application	on	the	system	other	than	the	user	mode	agent.	The	registration	of	the	value	is	
done	through	a	special	IOCTL	with	the	code	0x222004	sent	to	the	driver,	where	a	typical	
magic	string	is	pass12.	

	

Fig.	3.	Registration	of	the	packet	magic	value	using	a	designated	IOCTL	

Except	for	its	covert	channel	communication	feature,	Moriya	is	capable	of	establishing	a	
reverse	shell	session	using	an	overt	channel.	For	this	purpose,	it	waits	for	a	special	packet	
that	consists	of	a	message	with	the	structure	connect	<c2_address>	<c2_port>.	The	address	
and	port	are	parsed	and	used	by	the	agent	to	start	a	new	connection	to	the	given	server,	
while	creating	a	new	cmd.exe	process	and	redirecting	its	I/O	to	the	connection’s	socket.	The	
handles	for	the	newly	created	process	and	its	main	thread	are	destroyed	to	avoid	detection.	

In	any	other	case,	the	agent	attempts	to	read	the	incoming	TCP	payload	from	the	driver,	
which	will	be	retrieved	as	soon	as	a	designated	packet	with	a	magic	number	and	shell	
command	is	received.	An	attempt	is	made	to	read	the	data	with	a	plain	ReadFile	API	function	
as	a	blocking	operation,	i.e.,	reading	is	accomplished	only	once	the	buffer	in	kernel	mode	is	
populated	with	data	from	a	Moriya-related	packet.	

Upon	an	incoming	packet	event,	the	agent	creates	a	new	cmd.exe	process	and	redirects	its	
I/O	using	named	pipes.	One	pipe	is	used	to	read	the	retrieved	shell	command	from	the	
covert	channel	and	the	other	is	used	to	write	the	shell’s	output	(obtained	from	the	stdout	
and	stderr	streams)	back	to	it	after	execution.	To	write	any	data	back,	the	agent	uses	the	
WriteFile	API	function	with	the	driver’s	handle.	

All	traffic	passed	on	the	channel	is	encoded	with	a	simple	encryption	scheme.	Every	sent	
byte	has	its	payload,	following	the	magic	string,	XORed	with	the	value	0x05	and	then	
negated.	Following	the	same	logic,	to	decode	the	incoming	traffic’s	payload,	every	byte	of	it	
should	be	first	negated	and	then	XORed	with	0x05.	

	

Fig.	4.	Code	used	for	packet	encoding	

Kernel	mode	driver	analysis		

The	Moriya	rootkit’s	driver	component	makes	use	of	the	Windows	Filtering	Platform	(WFP)	
to	facilitate	the	covert	channel	between	the	compromised	host	and	the	C&C	server.	WFP	
provides	a	kernel	space	API	that	allows	driver	code	to	intercept	packets	in	transit	and	
intervene	in	their	processing	by	the	Windows	TCP/IP	network	stack.	This	makes	it	possible	
to	write	a	driver	that	can	filter	out	distinct	packet	streams,	based	on	developer-chosen	

criteria,	and	designate	them	for	consumption	by	a	specific	user	mode	application,	as	is	the	
case	in	Moriya.	

The	driver	fetches	the	distinct	Moriya-related	traffic	using	a	filtering	engine.	This	is	the	
kernel	mode	mechanism	used	to	inspect	traffic	according	to	rules	that	can	be	applied	on	
various	fields	across	several	layers	of	a	packet	(namely	data	link,	IP	and	transport),	making	
it	possible	to	handle	matching	packets	with	unique	handlers.	Such	handlers	are	referred	to	
as	callout	functions.	

In	the	case	of	Moriya,	the	filtering	engine	is	configured	to	intercept	TCP	packets,	sent	over	
IPv4	from	a	remote	address.	Each	packet	with	these	criteria	will	be	inspected	by	a	callout	
function	that	checks	if	its	first	six	bytes	correspond	to	the	previously	registered	magic	value,	
and	if	so,	copies	the	packet	contents	into	a	special	buffer	that	can	be	later	read	by	the	user	
mode	agent.	The	matching	packet	will	then	be	blocked	in	order	to	hide	its	presence	from	the	
system,	while	any	other	packet	is	permitted	to	be	processed	as	intended	by	the	network	
stack.	

To	allow	the	crafting	of	a	response	back	to	the	server,	the	callout	function	saves	a	special	
value	in	a	global	variable	that	identifies	the	received	TCP	stream.	This	value	is	called	a	
flowHandle,	and	is	taken	from	the	packet’s	corresponding	
FWPS_INCOMING_METADATA_VALUES0	struct.	When	the	user	issues	a	response	to	the	
server	via	the	driver,	the	latter	would	craft	a	new	packet	using	the	
FwpsAllocateNetBufferAndNetBufferList0	function	and	insert	the	response	data	and	target	
server	based	on	the	saved	flowHandle	to	it,	using	the	function	FwpsStreamInjectAsync0.	

	

Fig.	5.	Code	that	creates	a	new	packet,	designates	it	for	the	flow	of	the	corresponding	
incoming	TCP	packet	and	injects	data	written	from	user	space	into	it	

As	formerly	mentioned,	the	driver	registers	several	functions	that	are	exposed	to	the	user	
mode	agent	in	order	to	interact	with	it:	

• IRP_MJ_READ:	used	to	allow	the	user	mode	agent	to	read	the	body	of	a	Moriya	TCP	
packet	from	a	special	buffer	to	which	it	is	copied	upon	receipt.	The	function	itself	
waits	on	an	event	that	gets	signaled	once	such	a	packet	is	obtained,	thus	turning	the	
ReadFile	function	called	by	the	user	mode	agent	into	a	blocking	operation	that	will	
wait	until	the	packet	is	picked	up	by	the	driver.	

• IRP_MJ_WRITE:	injects	user-crafted	data	into	a	newly	created	TCP	packet	that	is	
sent	as	a	response	to	an	incoming	Moriya	packet	from	the	server.	

• IRP_MJ_DEVICE_CONTROL:	used	to	register	the	keyword	to	check	the	beginning	of	
every	incoming	TCP	packet	in	order	to	identify	Moriya-related	traffic.	The	passed	
magic	is	anticipated	to	be	six	characters	long.	

	

Fig.	6.	Code	used	for	registering	the	packet	magic	value	from	the	driver	side	

How	were	targeted	servers	initially	infected?	

Inspecting	the	systems	targeted	by	the	rootkit,	we	tried	to	understand	how	they	got	infected	
in	the	first	place.	As	previously	mentioned,	Moriya	was	seen	deployed	mostly	on	public-
facing	servers	within	the	victim	organizations.	In	one	case,	we	saw	the	attacker	infect	an	
organizational	mail	server	with	the	China	Chopper	webshell,	using	it	to	map	the	victim’s	

network	and	then	deploy	other	tools	in	it.	Moriya’s	user	mode	agent	was	explicitly	installed	
using	a	command	line	executed	on	the	targeted	server	this	way.	This	command	and	
examples	of	others	run	on	the	victim	machine	via	the	webshell	can	be	seen	below.	

1

2

3

4

5

6

7

8

"cmd" /c cd /d C:\inetpub\wwwroot\&ipconfig -all

"cmd" /c cd /d C:\inetpub\wwwroot\® query

HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest

"cmd" /c cd /d C:\inetpub\wwwroot\&$public\acmsetup.exe

"cmd" /c cd /d C:\inetpub\wwwroot\&query user

"cmd" /c cd /d C:\inetpub\wwwroot\&ipconfig/all

"cmd" /c cd /d C:\inetpub\wwwroot\&ping google.com

"cmd" /c cd /d C:\inetpub\wwwroot\&netstat -anp tcp

9

10

11

12

13

14

15

"cmd" /c cd /d C:\inetpub\wwwroot\&tasklist /v

"cmd" /c cd /d C:\inetpub\wwwroot\&whoami

"cmd" /c cd /d C:\inetpub\wwwroot\&cd $windir\web\

"cmd" /c cd /d $windir\Web\&rundll32 MoriyaServiceX64.dll, Install

"cmd" /c cd /d C:\inetpub\wwwroot\&ipconfig/all

"cmd" /c cd /d C:\inetpub\wwwroot\&time /t

...

In	general,	we	assess	that	the	group’s	modus-operandi	involves	infiltrating	organizations	

through	vulnerable	web	servers	in	their	networks.	For	example,	an	older	variant	of	Moriya	
named	IISSpy	(described	below)	targets	IIS	web	servers.	Our	telemetry	shows	that	it	was	
likely	deployed	by	exploiting	CVE-2017-7269	to	let	the	attackers	gain	an	initial	foothold	on	a	
server	prior	to	running	the	malware.	

Post	exploitation	toolset	

During	our	investigation	we	found	a	target	in	South	Asia	that	enabled	us	to	get	a	glimpse	
into	some	of	the	other	tools	that	we	assess	were	in	use	by	the	same	attacker.	The	toolset	
includes	programs	used	to	scan	hosts	in	the	local	network,	find	new	targets,	perform	lateral	
movement	to	spread	to	them	and	exfiltrate	files.	While	most	of	the	tools	seem	custom	made	
and	tailored	for	the	attackers’	activities,	we	could	also	observe	some	open-source	malware	
frequently	leveraged	by	Chinese-speaking	actors.	Following	is	an	outline	of	these	tools	
based	on	their	purpose	in	the	infection	chain.	

• Network	Discovery:	custom	built	programs	used	to	scan	the	internal	network	and	
detect	vulnerable	services.	

o HTTP	scanner:	command-line	tool,	found	under	the	name	‘8.tmp’,	which	
discovers	web	servers	through	banner	grabbing.	This	is	done	by	issuing	a	
malformed	HTTP	packet	to	a	given	address,	where	no	headers	are	included	
and	the	request	is	succeeded	with	multiple	null	bytes.	

	

Fig.	7.	Malformed	packet	generated	by	HTTP	scanner	

If	the	server	responds,	the	output	will	be	displayed	in	the	console,	as	shown	
below.	

	

Fig.	8.	Console	output	with	a	server	response	displayed	upon	discovery	
of	a	new	server	in	the	network	

o DCOM	Scanner:	another	command-line	utility	that	attempts	to	connect	to	a	
remote	host	on	TCP	port	135	(RPC),	and	use	the	DCOM	IOxidResolver	
interface	to	resolve	addresses	assigned	to	all	network	interfaces	available	on	
the	remote	system.	

	

Fig.	9.	Output	of	the	DCOM	scanner	utility	

• Lateral	Movement:	tools	used	to	spread	to	other	hosts	in	the	targeted	networks.	

o BOUNCER:	malware	that	was	first	described	by	Mandiant	in	their	
2013[2]	report	on	APT1.	This	tool	is	another	passive	backdoor	that	waits	for	
incoming	connections	on	a	specific	port	and	provides	different	features,	as	
outlined	below,	that	can	be	used	to	control	a	remote	host	and	facilitate	lateral	
movement	from	it.	

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0x01: Proxy Init Connection

 0x02: Proxy Send Packet

 0x03: Proxy Close Connection

 0x07: Execute Shellcode

 0x0A: Kill Bot

 0x0C: Reverse Shell CMD

 0x0D: Delete File

 0x0E: Execute local program

 0x0F: Enumerate Servers In Domain and save output in gw.dat

 0x10: Enumerate SQL Servers and save output insql.dat

 0x12: Reverse Shell CreateProcess

 0x16: Upload File - Write Data

 0x17: Download File - Finish

 0x1E: Download File - Start

 0x1F: Upload File - Start

 0x2D: Enumerate Servers

 0x2E: Enumerate SQL Server

 0x2F: Enumerate Servers Verbose

 0x30: Enumerate Users

 0x32: Do nothing

o The	BOUNCER	sample	that	we	observed	contained	a	string	that	indicates	
which	command-line	arguments	it	anticipates:	

1 usage:%s IP port [proxip] [port] [key]

o However,	the	backdoor	is	configured	to	accept	only	the	port	number	on	
which	it	will	listen.	

o We	saw	two	versions	of	this	backdoor,	initiated	by	two	different	launchers.	
The	first	one	is	an	executable	file	named	nw.tmp	that	decrypts	an	embedded	
payload	using	the	RC4	algorithm	and	injects	it	into	a	newly	spawned	
svchost.exe	process.	The	injected	payload	is	similar	to	one	described	by	
Mandiant	in	2013,	which	is	yet	another	intermediate	loader	that	decrypts	and	
loads	an	embedded	BOUNCER	DLL.	The	last	stage	is	started	by	invoking	the	
DLL’s	dump	export	with	the	arguments	passed	via	the	command	line.	

o The	other	version	was	stored	with	the	name	rasauto.dll	in	the	system	
directory,	impersonating	the	Windows	Remote	Access	Auto	Connection	
Manager	library.	Like	the	other	version,	it	decrypts	an	embedded	DLL	using	
RC4,	but	this	time	uses	no	intermediate	stage,	instead	directly	calling	the	
DLL’s	dump	export	without	arguments.	The	decrypted	library	is	a	slightly	
modified	BOUNCER	variant	that	always	listens	on	the	hardcoded	port	1437.	

o 	
o Fig.	10.	Code	from	the	second	BOUNCER	variant	that	uses	the	hardcoded	

port	1437	to	listen	for	new	packets	
o Based	on	compilation	timestamps	of	all	BOUNCER-related	executables,	as	

shown	below,	we	assess	that	the	attacker	reused	old	samples	of	the	malware	
rather	than	compiled	new	versions	of	it:	

1

2

3

4

5

6

nw.tmp – stage 0 - launcher - 08-03-2017 03:56:24

 nw.tmp – stage 1 - embedded loader - 26-08-201404:49:58

 nw.tmp – stage 2 - embedded BOUNCER backdoor -28-05-
2012 13:44:37

 rasauto.dll - stage 0 – loader 26-08-2013 09:37:08

 rasauto.dll - stage 1 - embedded BOUNCER backdoor- 26-08-
2013 09:36:27

o Custom	PSExec:	the	attacker	deployed	a	tool	to	execute	commands	remotely	
on	compromised	machines.	Like	the	original	PSExec	tool,	this	one	consists	of	
two	components	–	a	client	named	tmp	and	a	service	named	pv.tmp.	In	order	
to	use	the	tool,	the	attacker	has	to	execute	it	via	a	command	line	with	the	
parameters	specified	below.	

1 Usage: psexec <hostname > psserve_path exefilename ServerName[option]\n

o The	service	component	is	a	tiny	program	that	uses	the	CreateProcessA	API	to	
start	a	program	specified	as	an	argument.	The	client	component	uses	the	
Service	Control	Manager	(SCM)	API	to	create	a	service	on	the	target	machine.	
If	the	ServerName	argument	is	not	specified,	the	service	will	be	named	
Server%c%c	where	%c	is	a	random	lower	case	character.	The	exefilename	
argument	is	then	passed	to	the	StartServiceA	function	in	order	to	initiate	the	
command	execution.	

o 	
o Fig.	11.	Code	used	to	create	and	start	the	service	on	targeted	host	
o It	is	worth	noting	that	the	program	has	some	limitations.	Compared	with	the	

original	PSExec,	it	is	not	able	to	copy	the	service	binary	(i.e.,	pv.tmp,	which	
has	its	path	specified	in	the	psserve_path	argument)	to	a	remote	machine,	but	
rather	assumes	it	is	already	present	on	it.	Besides,	it	cannot	handle	network	
credentials,	limiting	the	ability	to	execute	commands	as	other	users,	nor	does	
it	support	pipes,	which	means	it	does	not	receive	the	output	of	the	commands	
it	issues.	

• Exfiltration:	multi-platform	utilities	commonly	used	to	establish	connections	with	
remote	hosts	and	conduct	file	system	operations	on	them,	including	file	upload	and	
download.	

o Earthworm	and	Termite:	well-known	command-line	utilities	developed	to	
facilitate	intrusion	into	intranet	networks.	These	programs	are	multiplatform	
and	can	be	deployed	on	various	architectures.	Earthworm	is	used	to	create	
tunnels	between	compromised	hosts	and	transfer	data.	

	

Fig.	12.	Earthworm	help	message	

Termite	provides	additional	features	to	download	and	upload	files	between	
the	compromised	hosts,	as	well	as	a	way	to	spawn	a	remote	shell	to	control	
the	targeted	machine.	

	

Fig.	13.	Termite	help	message	

o TRAN:	another	tool	that	we	detected	under	the	filename	tmp	that	was	used	to	
transfer	data	between	compromised	hosts.	The	binary	we	saw	operated	as	a	
loader	that	embodies	a	tiny	web	server	encrypted	with	the	RC4	algorithm	
within	it.	This	server	is	later	injected	into	a	newly	created	legitimate	
schtask.exe	process	and	usually	listens	on	port	49158.	It	is	used	for	managing	
files	uploaded	by	the	attacker	into	an	in-memory	virtual	file	system	
maintained	by	the	malware.By	default	the	file	system	includes	a	tiny	program	
named	client.exe,	which	can	be	downloaded	by	any	host	using	a	standard	
HTTP	GET	request	to	the	path	/client.exe.	This	file	is	a	command-line	utility	
that	can	be	used	to	control	the	virtual	file	system	managed	by	the	server,	
through	one	of	several	available	commands	outlined	below.	

	

Fig.	14.	Client.exe	help	message	

IISSpy:	tracing	Moriya	back	to	a	user-mode	rootkit	

IISSpy	is	an	older	user-mode	version	of	the	Moriya	rootkit	that	we	were	able	to	pinpoint	in	
our	telemetry.	It	is	used	to	target	IIS	servers	for	establishing	a	backdoor	in	their	underlying	
websites.	It	was	detected	on	a	machine	in	2018,	unrelated	to	any	of	the	attacks	in	the	
current	operation.	This	suggests	the	threat	actor	has	been	active	since	at	least	that	year.	

The	malware,	which	comes	as	a	DLL,	achieves	its	goals	by	enumerating	running	IIS	
processes	on	the	server	(i.e.,	those	that	are	executed	from	the	image	w3wp.exe),	and	
injecting	the	malware’s	DLL	into	them	to	alter	their	behavior.	The	executed	code	in	the	IIS	
processes	will	then	set	inline	hooks	for	several	functions,	most	notably	CreateFileW.	

The	corresponding	CreateFileW	hook	function	checks	if	the	filename	argument	contains	the	
directory	‘\MORIYA\’	or	‘\moriya\’	in	its	path,	and	if	so,	infers	that	the	attacker	has	sent	a	
specially	crafted	HTTP	request	to	the	web	server.	In	this	request,	the	Moriya	path	in	the	URL	
is	followed	by	an	encoded	command.	After	the	command	is	decoded	and	processed,	it	is	
passed	via	a	mailslot	(\\.\mailslot\slot)	to	a	separate	thread,	while	signaling	an	event	called	
Global\CommandEvent.	

	

Fig.	15.	Code	of	the	CreateFileW	hook	function	that	looks	for	the	‘MORIYA’	\	‘moriya’	
directory	in	a	request	path	

Should	the	currently	handled	file	contain	the	Moriya	path,	the	very	same	hook	function	will	
generate	a	special	file	on	the	web	server	to	which	command	execution	output	will	be	
written.	This	file’s	path	is	created	by	finding	the	position	of	the	‘\MORIYA\’	or	‘\moriya\’	
strings	in	the	inspected	filename	argument,	and	replacing	it	with	the	string	‘\IISINFO.HTM’.	
This	will	then	be	appended	to	the	command	data	passed	on	the	mailslot,	following	a	‘	>	‘	
character.	

The	other	thread	waiting	on	the	command	event	mentioned	above	is	in	charge	of	processing	
attacker	data	fetched	from	the	mailslot.	Any	such	command	will	be	read	and	parsed	to	find	
the	‘	>	‘	character	and	the	file	path	that	follows	it,	in	this	case	the	one	corresponding	to	
‘IISINFO.HTML’.	After	executing	the	command	via	cmd.exe,	the	output	will	be	written	to	the	
file	in	this	path,	allowing	the	attacker	to	read	it	by	issuing	a	corresponding	HTTP	request	
where	the	URL	path	leads	to	this	file	on	the	server.	

Other	functions	that	are	hooked	in	the	IIS	process	are	CreateProcessAsUserW	and	
CreateProcessW.	These	are	used	to	detect	if	the	current	process	spawns	a	new	server	
instance,	which	will	in	turn	be	injected	with	the	malware’s	DLL.	Apart	from	this,	IISSpy	will	
also	create	a	monitoring	thread	that	will	periodically	look	for	newly	created	httpd.exe	
processes,	corresponding	to	the	Apache	server.	If	detected,	the	malware	will	be	injected	to	
them	as	well.	

Although	it	is	evident	from	both	the	functionality	and	use	of	the	Moriya	keyword	by	the	
malware	that	IISSpy	and	the	Moriya	rootkit	are	related,	further	evidence	in	the	code	
substantiates	the	connection:	

• The	older	variant	is	capable	of	creating	a	reverse	shell	transmitted	through	an	overt	
channel	in	exactly	the	same	way	as	the	more	recent	version	of	the	malware,	i.e.,	it	
identifies	a	connect	request	followed	by	a	C&C	server	address	and	port,	connects	to	it	
and	redirects	the	IO	of	a	new	exe	process	to	the	underlying	socket.	

• Both	variants	use	the	same	packet	encoding	and	decoding	algorithm,	whereby	each	
clear-text	byte	is	XORed	with	0x5	and	negated,	and	vice-versa.	

	

Fig.	16.	Packet	decoding	loop	that	follows	the	same	logic	as	that	used	in	Moriya	

• In	both	cases	the	developers	left	a	trail	of	unique	debug	messages,	issued	to	the	
OutputDebugString	API	function.	An	example	of	such	a	string	used	in	identical	code	
in	the	two	variants	is	shown	below.	

	

Fig.	17.	Code	used	in	both	variants	to	spawn	a	new	shell,	while	printing	unique	debug	
messages	

• Both	implants	are	deployed	by	invoking	an	export	function	named	Install	that	
creates	a	service	that	allows	persistent	execution,	with	the	malware’s	logic	residing	
in	the	ServiceMain	Moreover,	the	Install	functions	are	highly	similar	to	one	another.	

	

Fig.	18.	Comparison	of	Install	export	function	CFGs	between	IISSpy	and	Moriya	

The	ProcessKiller	rootkit	vs.	security	products	

Another	interesting	artefact	found	in	our	telemetry	that	could	be	tied	to	the	developers	of	
Moriya	is	a	malware	named	ProcessKiller.	As	its	name	suggests,	it	is	intended	to	eliminate	

execution	of	processes,	with	the	use	of	a	kernel	mode	driver.	Ultimately,	this	tool	is	used	to	
shut	down	and	block	initiation	of	AV	processes	from	kernel	space,	thus	allowing	other	attack	
tools	to	run	without	being	detected.	

This	malware	operates	through	the	following	stages:	

• An	attacker	calls	the	malware’s	DLL	from	an	export	named	Kill,	passing	it	a	list	of	
process	names	it	would	like	to	shut	down	and	block	as	a	command-line	argument.	

• The	malware	writes	a	driver	that	is	embedded	as	a	resource	within	it,	impersonating	
a	Kaspersky	driver	under	the	path	%SYSTEM%\drivers\kavp.sys.	

• There	is	an	attempt	to	load	the	driver	using	the	Service	Control	Manager.	However,	
since	it	is	not	signed	and	loading	is	prone	to	fail	on	Windows	versions	above	Vista	
64-bit,	the	malware	uses	the	same	DSEFix	code	to	bypass	Digital	Signature	
Enforcement	as	witnessed	in	Moriya’s	user	mode	agent.	

• The	malware	parses	the	process	names	passed	as	arguments	and	creates	a	vector	of	
‘blacklisted	processes’	out	of	them.	

• For	each	process	in	the	list,	the	malware	detects	its	PID	and	issues	it	through	an	
IOCTL	with	code	0x22200C	to	the	driver	which	is	in	charge	of	shutting	it	down	from	
kernel	space.	The	shutdown	is	carried	out	by	locating	the	process	object	with	the	
function	PsLookupProcessByProcessId	and	then	terminating	it	with	
ZwTerminateProcess.	

• The	list	of	processes	is	then	passed	via	another	IOCTL	with	the	code	0x222004	to	the	
driver,	which	inserts	each	member	of	it	to	a	linked	list	in	kernel	space.	When	the	
driver	is	bootstrapped,	it	registers	a	callback	for	newly	created	processes	through	
the	PsSetCreateProcessNotifyRoutineEx	function,	which	inspects	the	image	name	of	
the	created	process	and	compares	it	against	those	found	in	the	linked	list.	If	a	match	
is	found,	the	process	creation	status	in	the	PPS_CREATE_NOTIFY_INFO	structure	will	
be	set	to	STATUS_UNSUCCESSFUL,	signaling	the	user	space	API	function	that	process	
creation	failed.	

• At	this	point	any	other	malware	can	theoretically	operate	without	being	detected.	
• If	the	attacker	wishes	to	disable	blacklisting,	it	can	be	done	by	issuing	an	IOCTL	with	

the	code	0x222008,	which	would	destroy	the	linked	list	of	blacklisted	processes.	

Once	again,	the	connection	to	Moriya	is	based	on	several	observations:	

• Distinct	debug	error	messages,	as	the	one	presented	below.	

	

Fig.	19.	Unique	debug	message	that	appears	in	ProcessKiller	and	Moriya	

• Filename	of	the	same	structure,	i.e.,	Moriya’s	agent	is	internally	named	
‘MoriyaServiceX64.dll’,	and	ProcessKiller’s	DLL	is	named	‘ProcessKillerX64.dll’	

• Usage	of	the	exact	same	DSEFix	code	to	load	an	unsigned	driver.	

What	do	we	know	about	the	threat	actor?	

Unfortunately,	we	are	not	able	to	attribute	the	attack	to	any	particular	known	actor,	but	
based	on	the	TTPs	used	throughout	the	campaign,	we	suppose	it	is	a	Chinese-speaking	one.	
We	base	this	on	the	fact	that	the	targeted	entities	were	attacked	in	the	past	by	Chinese-
speaking	actors,	and	are	generally	located	in	countries	that	are	usually	targeted	by	such	an	
actor	profile.	Moreover,	the	tools	leveraged	by	the	attackers,	such	as	China	Chopper,	
BOUNCER,	Termite	and	Earthworm,	are	an	additional	indicator	supporting	our	hypothesis	
as	they	have	previously	been	used	in	campaigns	attributed	to	well-known	Chinese-speaking	
groups.	

Who	were	the	targets?	

Based	on	our	telemetry	the	attacks	were	highly	targeted	and	delivered	to	less	than	10	
victims	around	the	world.	The	most	prominent	victims	are	two	large	regional	diplomatic	
organizations	in	South-East	Asia	and	Africa,	while	all	the	others	were	victims	in	South	Asia.	

Conclusion	

The	TunnelSnake	campaign	demonstrates	the	activity	of	a	sophisticated	actor	that	invests	
significant	resources	in	designing	an	evasive	toolset	and	infiltrating	networks	of	high-profile	
organizations.	By	leveraging	Windows	drivers,	covert	communications	channels	and	
proprietary	malware,	the	group	behind	it	maintains	a	considerable	level	of	stealth.	That	said,	
some	of	its	TTPs,	like	the	usage	of	a	commodity	webshell	and	open-source	legacy	code	for	
loading	unsigned	drivers,	may	get	detected	and	in	fact	were	flagged	by	our	product,	giving	
us	visibility	into	the	group’s	operation.	

Still,	with	activity	dating	back	to	at	least	2018,	the	threat	actor	behind	this	campaign	has	
shown	that	it	is	able	to	evolve	and	tailor	its	toolset	to	target	environments.	This	indicates	
the	group	conducting	these	attacks	may	well	still	be	active	and	retooling	for	additional	
operations	in	the	area	of	interest	outlined	in	this	publication,	as	well	as	other	regions.	With	
that	in	mind,	we	continue	to	track	this	attacker	and	look	for	signs	of	its	reappearance	in	the	
wild.	Any	findings	and	updates	will	be	made	available	to	customers	of	our	Threat	
Intelligence	Portal.	

For	more	information	about	operation	TunnelSnake	and	the	underlying	threat	actor,	contact	
us	at:	intelreports@kaspersky.com.	
To	learn	more	on	reverse	engineering	and	malware	analysis	from	Kaspersky	GReAT	experts,	
check	out	the	website	http://xtraining.kaspersky.com.	

IOCs	
[1]	Today	a	copy	of	the	original	code	can	be	found	
here:	http://www.m5home.com/bbs/thread-8043-1-1.html	

[2]	https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-
report.pdf	

