

CosmicStrand: the discovery of a
sophisticated UEFI firmware rootkit

Introduction
Rootkits are malware implants which burrow themselves in the deepest corners of
the operating system. Although on paper they may seem attractive to attackers,
creating them poses significant technical challenges and the slightest programming
error has the potential to completely crash the victim machine. In our APT
predictions for 2022, we noted that despite these risks, we expected more attackers
to reach the sophistication level required to develop such tools. One of the main
draws towards malware nested in such low levels of the operating system is that it is
extremely difficult to detect and, in the case of firmware rootkits, will ensure a
computer remains in an infected state even if the operating system is reinstalled or
the user replaces the machine’s hard drive entirely.

In this report, we present a UEFI firmware rootkit that we called CosmicStrand and
attribute to an unknown Chinese-speaking threat actor. One of our industry partners,
Qihoo360, published a blog post about an early variant of this malware family in
2017.

Affected devices
Although we were unable to discover how the victim machines were infected initially,
an analysis of their hardware sheds light on the devices that CosmicStrand can

infect. The rootkit is located in the firmware images of Gigabyte or ASUS
motherboards, and we noticed that all these images are related to designs using the
H81 chipset. This suggests that a common vulnerability may exist that allowed the
attackers to inject their rootkit into the firmware’s image.

In these firmware images, modifications have been introduced into the CSMCORE
DXE driver, whose entry point has been patched to redirect to code added in the
.reloc section. This code, executed during system startup, triggers a long execution
chain which results in the download and deployment of a malicious component
inside Windows.

Looking at the various firmware images we were able to obtain, we assess that the
modifications may have been performed with an automated patcher. If so, it would
follow that the attackers had prior access to the victim’s computer in order to extract,
modify and overwrite the motherboard’s firmware. This could be achieved through a
precursor malware implant already deployed on the computer or physical access
(i.e., an evil maid attack scenario). Qihoo’s initial report indicates that a buyer might
have received a backdoored motherboard after placing an order at a second-hand
reseller. We were unable to confirm this information.

Overview of the infection process
Before getting into the various components that compose this rootkit, we would like
to provide a high-level view of what it tries to accomplish. The goal of this execution
chain is to deploy a kernel-level implant into a Windows system every time it boots,
starting from an infected UEFI component.

UEFI malware authors face a unique technical challenge: their implant starts running
so early in the boot process that the operating system (in this case Windows) is not
even loaded in memory yet – and by the time it is, the UEFI execution context will
have terminated. Finding a way to pass down malicious code all the way through the
various startup phases is the main task that the rootkit accomplishes.

The workflow consists in setting hooks[1] in succession, allowing the malicious code
to persist until after the OS has started up. The steps involved are:

• The initial infected firmware bootstraps the whole chain.
• The malware sets up a malicious hook in the boot manager, allowing it to

modify Windows’ kernel loader before it is executed.
• By tampering with the OS loader, the attackers are able to set up another hook

in a function of the Windows kernel.
• When that function is later called during the normal start-up procedure of the

OS, the malware takes control of the execution flow one last time.
• It deploys a shellcode in memory and contacts the C2 server to retrieve the

actual malicious payload to run on the victim’s machine.

These steps are summed up in the following graph:

UEFI implant – detailed analysis

MD5 DDFE44F87FAC7DAEEB1B681DEA3300E9

SHA1 9A7291FC90F56D8C46CC78397A6F36BB23C60F66
SHA25
6

951F74882C1873BFE56E0BFF225E3CD5D8964AF4F7334182BC1BF0EC9E987
A0A

Link
time

Wednesday, 12.08.2015 12:17:57 UTC

File
type

EFI Boot Service DXE Driver

File
size

96.84 KB

GUID A062CF1F-8473-4AA3-8793-600BC4FFE9A8 (CSMCORE)

Having established what the malware implant tries to accomplish, we can now look
into more detail at how each of these steps is performed.

1. The whole execution chain begins with an EFI driver. It appears to be a
patched version of a legitimate one named CSMCORE (intended to facilitate
the boot of the machine in legacy mode via the MBR), where the attackers
have modified the pointer to the HandleProtocol boot service function. Every
time this function is called, the execution is redirected to attacker-supplied
code that tries to determine which component called it (it is looking for a
specific one to infect – efi). By examining the function arguments as well as
the bytes located at the return address, CosmicStrand can identify the exact
“call” it is looking for.

2. This specific point in the execution was chosen because at this stage the boot
manager is loaded in memory, but isn’t yet running. CosmicStrand seizes this
chance to patch a number of bytes in its
Archpx64TransferTo64BitApplicationAsm

3. That function is later called during the normal OS startup process, also at a
strategic time: by then the Windows OS loader is also present in memory and
can in turn be modified.

4. When it runs, Archpx64TransferTo64BitApplicationAsm locates a function
from the OS loader (OslArchTransferToKernel) by looking for a specific byte
pattern. CosmicStrand then adds a hook at the very end of it.

5. OslArchTransferToKernel is called just before execution is transferred from
the Windows loader to the Windows kernel, which makes it a traditional
hooking point for rootkits of that sort.

6. Before the Windows kernel has had a chance to run, CosmicStrand sets up yet
another hook in the ZwCreateSection Malicious code is copied[2] into the
image of ntoskrnl.exe in memory, and the first bytes of ZwCreateSection are
overwritten to redirect to it. We note that the attackers were careful to place
the malicious code inside the slack space of ntoskrnl.exe’s .text section, which
makes this redirection a lot less conspicuous in the eyes of possible security
products.

At this point, CosmicStrand also seemingly attempts to disable PatchGuard, a
security mechanism introduced to prevent modifications in key structures of
the Windows kernel in memory. To do so, it locates ntoskrnl.exe’s
KiFilterFiberContext function[3] and modifies it so it returns without performing
any work. It is worth noting that the localization of this function, also achieved
by searching for hardcoded patterns, is very exhaustive and even contains
patterns corresponding to the Redstone 1 release from August 2016.

7. The Windows kernel then starts, and ends up calling the hooked
ZwCreateSection function while running normally. When that happens,
CosmicStrand gains control of the execution again, and restores the original
code before running more malicious code.

8. The ZwCreateSection hook’s primary purpose is to collect the addresses of
API functions provided by the kernel, and create a sort of import table for the
next component. Using the resolved functions, it also allocates a buffer in the
kernel’s address space where it maps a shellcode, before calling it.

Kernel shellcode
All the steps described so far only served the purpose of propagating code execution
from the UEFI down to the Windows kernel. This shellcode is the first actually
malicious component of the chain so far. It sets up a thread notify routine that gets
invoked each time a new thread is created. CosmicStrand waits until one turns up in
winlogon.exe, and then executes a callback in this high-privilege context.

There, CosmicStrand sleeps for 10 minutes and tests the internet connectivity of the
infected machine. CosmicStrand doesn’t rely on high-level API functions to generate
network traffic, but instead interacts directly with the Transport Device Interface: it
generates the needed IRPs (I/O request packets) and passes them to the network
stack by sending IOCTLs to the TCP or UDP device object. DNS requests are
performed in this fashion, using either Google’s DNS server (8.8.8[.]8) or a custom
one (222.222.67[.]208).

CosmicStrand retrieves its final payload by sending a specifically crafted UDP
(preferably) or TCP packet to its C2 server, update.bokts[.]com. The reply is expected
to return in one or several packets containing chunks of 528 bytes following this
structure:

Offset (bytes) Description

0-4 Magic number
4-8 Total length of the payload
8-12 Length of the current chunk
12-16 CRC32 checksum of the current chunk
16-* Payload chunk

The various chunks are reassembled into a series of bytes that are mapped into
kernel space and interpreted as a shellcode. Unfortunately, we were not able to
obtain a copy of data coming from the C2 server. We did, however, find a user-mode
sample in-memory on one of the infected machines we could study, and believe it is
linked with CosmicStrand. This sample is an executable that runs command lines in
order to create a user (“aaaabbbb”) on the victim’s machine and add it to the local
administrators group.

We can infer from this that shellcodes received from the C2 server might be stagers
for attacker-supplied PE executables, and it is very likely that many more exist.

Older CosmicStrand variants
During the course of our investigation, we also discovered older versions of this
rootkit. They feature the same deployment process and their minute differences
pertain to the kernel shellcode.

• It attempts to hijack a thread from exe instead of winlogon.exe.
• The C2 domain contacted to obtain additional shellcode in order to run is

different (erda158[.]to).
• The older variant printed debugging messages every time a new process was

created in the system.

Based on our analysis of the infrastructure used for the two variants, we estimate
that the older one saw use between the end of 2016 and mid-2017, and the current
one was active in 2020.

Infrastructure

We are aware of two C2 servers, one for each variant. According to passive DNS data
available for them, these domains had a long lifetime and resolved to IP addresses
during limited timeframes – outside of which the rootkit would have been
inoperative. It is therefore interesting to note that while the attackers opted to deploy
an extremely persistent implant, the actual exploitation of the victim machines may
not have lasted more than a few months. It is, however, possible that these domains
were occasionally reactivated for very short durations, and that this information
would not have been recorded by passive DNS systems.

Domain IP First seen Last seen ASN

www.erda158[.]top
58.84.53[.]194 2016-12-27 2017-04-26 AS48024 (NEROCLOUD)
115.239.210[.]27 2017-04-30 2017-06-24 AS58461 (CHINANET)

update.bokts[.]com
23.82.12[.]30 2020-05-03 2020-05-03 AS30633 (Leaseweb USA)
23.82.12[.]31 2020-07-25 2020-07-25 AS30633 (Leaseweb USA)
23.82.12[.]32 2020-03-09 2020-07-25 AS30633 (Leaseweb USA)

Careful readers will notice the three-year gap between the activity periods of the two
domains. It is possible that during that time, the attackers were controlling the
victim’s machines using user-mode components deployed through CosmicStrand, or
(more likely) that other variants and C2 servers that we did not yet discover exist
somewhere.

Victims
We were able to identify victims of CosmicStrand in China, Vietnam, Iran and Russia.
A point of interest is that all the victims in our user base appear to be private
individuals (i.e., using the free version of our product) and we were unable to tie them
to any organization or even industry vertical.

Attribution
Several data points lead us to believe that CosmicStrand was developed by a
Chinese-speaking threat actor, or by leveraging common resources shared among
Chinese-speaking threat actors. Specifically, a number of code patterns featured in
CosmicStrand were also observed in another malware family, the MyKings botnet
(e.g., MD5 E31C43DD8CB17E9D68C65E645FB3F6E8). This botnet, used to deploy
cryptominers, was documented by Sophos in 2020 where they noted the presence of
several Chinese-language artifacts.

Similarities with CosmicStrand include:

• The use of an MBR rootkit to establish stealthy persistence in MyKings.
• CosmicStrand and MyKings use identical tags when they allocate memory in

kernel mode (Proc and GetM).
• Both families generate network packets the same way, and leverage the UDP

and TCP device objects directly.
• The API hashing code used in the two of them is identical, as evidenced by the

screenshot below. As far as we know, this algorithm was only ever found in
two other rootkits, MoonBounce and xTalker – also tied to Chinese-speaking
threat actors.

In addition to this code similarity, the fact that the hardcoded fallback DNS server
used by CosmicStrand is located in CHINANET-BACKBONE (AS4134) could be
perceived as a very low-confidence sign that the attackers are part of the Chinese-
speaking nexus. Beyond this tie, we have decided that we do not have sufficient
information that would allow us to link CosmicStrand to an existing cluster.

Conclusions
CosmicStrand is a sophisticated UEFI firmware rootkit that allows its owners to
achieve very durable persistence: the whole lifetime of the computer, while at the
same time being extremely stealthy. It appears to have been used in operation for
several years, and yet many mysteries remain. How many more implants and C2
servers could still be eluding us? What last-stage payloads are being delivered to the
victims? But also, is it really possible that CosmicStrand has reached some of its
victims through package “interdiction”? In any case, the multiple rootkits discovered
so far evidence a blind spot in our industry that needs to be addressed sooner rather
than later.

The most striking aspect of this report is that this UEFI implant seems to have been
used in the wild since the end of 2016 – long before UEFI attacks started being
publicly described. This discovery begs a final question: if this is what the attackers
were using back then, what are they using today?

The GReAT team would like to extend its special thanks to their former colleague, Mark
Lechtik, for his key involvement in this research.

[1] A hook is a modification to the normal flow of execution of a program. It aims to
execute additional code provided by the attacker before or after a given function. In
some environments, function hooking is provided for legitimate purposes and can be
set up easily through conventional programming mechanisms. In other cases, where
they are not explicitly supported, attackers can still achieve hooking by overwriting
(and later on, restoring) the code that is about to be executed. Both cases are
leveraged by this rootkit.

[2] Here we skip the implementation details and shellcode tricks used by the rootkit in
order to obtain the address of the malicious code. The precise workflow of this part
is left as an exercise to the reader, and documented extensively in our private report
on this activity.

