

Horde Webmail 5.2.22 -
Account Takeover via Email
BY SIMON SCANNELL| FEBRUARY 22, 2022

Horde Webmail is a free, enterprise-ready, and browser-based communication suite

developed by the Horde project. It is a popular webmail solution for universities and

government agencies to exchange sensitive email messages on a daily basis. It is

also shipped as part of the popular hosting solution cPanel that is used by many

enterprises to manage their website.

We discovered a code vulnerability in Horde that allows an attacker to gain full

access to the email account of a victim when it loads the preview of a harmless-

looking email attachment. This gives the attacker access to all sensitive and perhaps

secret information a victim has stored in their email account and could allow them to

gain further access to the internal services of an organization.

Although we reported this vulnerability almost 6 months ago, there is currently no

official patch available. Hence, we provide recommendations on how to mitigate this

code vulnerability at the end of this blog post. This can be done easily by disabling

the affected feature, which does not have a big impact on the usability of the

software. By releasing the vulnerability and patch details, we hope to raise visibility

and to enable administrators to secure their servers.

Impact
This Stored XSS vulnerability was introduced with the commit 325a7ae, 9 years ago.

It likely affects all the Horde instances deployed as of today and works under default

configurations.

An attacker can craft an OpenOffice document that when transformed to XHTML by

Horde for preview can execute a malicious JavaScript payload. The vulnerability

triggers when a targeted user views an attached OpenOffice document in the

browser. As a result, an attacker can steal all emails the victim has sent and

received.

By default, Horde ships with an admin panel, which allows admins to execute

arbitrary system commands on a Horde instance through the administrative

interface. If an attacker succeeds in targeting an administrator with a personalized,

malicious email, they could abuse this privileged access to take over the entire

webmail server.

Technical Details
In the following sections, we go into detail about an unusual XSS vulnerability that

occurs due to a relaxed matching rule in an XSLT document.

Background: OpenOffice documents and XSLT transformations

An OpenOffice document is a ZIP file containing XML documents, as well as other

files needed to render a document, such as images. When Horde is asked to convert

an OpenOffice document to HTML for its previsualization, it uses XSLT (eXtensible

Stylesheet Language Transformations) to convert the XML files contained within the

OpenOffice document.

XSLT documents are XML documents containing directives that instruct an XSLT

processor on how to convert an input XML document into HTML markup. Let’s learn

about some directives to gain a better understanding of XSLT and the root cause of

the vulnerability discussed in this blog post.

The following snippet shows the declaration of an XSL stylesheet and uses

the <xsl:output> directive to declare that html code will be produced by this

stylesheet:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" />
...

Another important directive is the <xsl:template> directive. In the following

example, the template is always processed as it is run when matched against the

root element of an XML document:
<xsl:template match="/">
<html>
 <body>
 <h1>
 <xsl:value-of select="/BlogPost/Title"/>
 </h1>
 </body>
</html>
</xsl:template>

In the example of the <xsl:template> above, the <html>, <body> and <h1> tags

are not processed and become a part of the final HTML document that is produced.

However, the value of the <h1> tag is dynamically generated. An XPath query is used

to select the value of a Title element within the input XML document to be rendered.

This is done with the <xsl:value-of select="/BlogPost/Title"/> directive.

Let’s assume the following XML document, which holds information about a blog

post, was to be rendered:

<?xml version="1.0"?>
<BlogPost>
 <Title>A Blog Post about XSLT vulnerabilities</Title>
 <Authors>

 <Author>Foo</Author>
 <Author>Bar</Author>
 </Authors>
 <Content>Lorem Ipsum</Content>
</BlogPost>

In this case, the resulting HTML would look like the following, as the value of

the <h1> tag is dynamically produced:
<html>
 <body>
 <h1>
 A Blog Post about XSLT vulnerabilities
 </h1>
 </body>
</html>

With this background knowledge in mind, let’s look at how an XSS vulnerability could

arise when translating XML documents into HTML.

Stored XSS vulnerability in crafted OpenOffice document
When Horde is asked to render an OpenOffice document for a user, it utilizes

the opendoc2xhtml.xsl stylesheet file developed by the OpenOffice project. The

following code snippet shows how this XSL document is loaded and then used to

transform the attacker-controlled content.xml file:

Horde/Mime/Viewer/Ooo.php
 $xslt = new XSLTProcessor();
 $xsl = new DOMDocument();
 $xsl->load(realpath(__DIR__ .
'/Ooo/export/xhtml/opendoc2xhtml.xsl'));
 $xslt->importStylesheet($xsl);
 $xslt->setParameter('http://www.w3.org/1999/XSL/Transform', array(
 'metaFileURL' => 'file://' . $tmpdir . 'meta.xml',
 'stylesFileURL' => 'file://' . $tmpdir . 'styles.xml',
 'java' => false,
));
 $xml = new DOMDocument();
 $xml->load(realpath($tmpdir . 'content.xml'));
 $result = $xslt->transformToXml($xml);
 if (!$result) {
 $result = libxml_get_last_error()->message;
 }

 return array(
 $this->_mimepart->getMimeId() => array(
 'data' => $result,
 'status' => array(),
 'type' => 'text/html; charset=UTF-8'
)
);
 }

Once the XML file has been converted, it is simply returned to the user without any

further sanitization after the conversion from OpenOffice document to XHTML. This

means that if an attacker could craft an OpenOffice document that leads to

JavaScript injection in the resulting XHTML, then a XSS vulnerability occurs.

Finding an injection point in an XSLT
stylesheet
In a previous example, we used the <xsl:value-of> directive to query the value of

a user-controlled XML element and embed it into outputted HTML code. By default,

this directive escapes its output and thus won’t allow XSS. The same escaping

applies to attributes, which means we can’t inject attributes into HTML elements.

The vulnerability we discovered comes from an injection point where no escaping is

applied, which is shown in the following snippet:

<xsl:template match="draw:object[math:math]">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <xsl:apply-templates select="math:math/math:semantics/*"
mode="math"/>
 </math>
</xsl:template>

The logic of it could be read as: for all <draw:object> elements which have

a <math:math> element, apply all templates that have their mode attribute set to

math. These templates should operate on all children of a <math:semantics> child.

This is because of the * in the XPath query.

In practice, this means that this template is executed when the attacker-controlled

OpenOffice document contains the following tags:

<draw:object><math:math><math:semantics>...</math:semantics></math:math></d
raw:object>

The following template operates on any child of the previously shown elements:

<xsl:template match="*" mode="math">
 <xsl:element name="{local-name()}"
namespace="http://www.w3.org/1998/Math/MathML">
 <xsl:apply-templates select="@*|node()" mode="math"/>
 </xsl:element>
</xsl:template>

It uses the <xsl:elements> directive to dynamically create a new HTML tag. The

name of the tag becomes the tag that is currently operated on, which is determined

by the local-name() function. As the parent template passed any element to this

template, as instructed by the * in the XPath query, an attacker can create arbitrary

HTML elements, including <script> tags.

The ability to create arbitrary HTML tags leads to the ability of an attacker to craft an

OpenOffice document containing the following markup:

<draw:object><math:math><math:semantics><p>XSS payload:
</p><script>alert(‘xss’);</script>

When a victim then views such an OpenOffice document attachment, the XSS

payload triggers and gives an attacker full access to their session. This means the

attacker can steal all emails and, in a worst-case scenario, even execute arbitrary

system commands if the victim has the administrator role.

Patch
As there is no official patch available at the time of writing, we recommend disabling

the rendering of OpenOffice attachments. To do so, administrators can edit

the config/mime_drivers.php file in the content root of their Horde installation.

As shown in the snippet below, add the 'disable' => true configuration option to

the OpenOffice mime handler:
/* OpenOffice.org/StarOffice document display. */
'ooo' => array(
 'disable' => true, // <---- HERE
 'handles' => array(
 'application/vnd.stardivision.calc',
 'application/vnd.stardivision.draw',

 // ...

Users will still be able to download the OpenOffice documents and view them locally,

but Horde won’t attempt to render it in the browser. With this, the vulnerable feature

is not used and the Horde instance is protected against exploitation of this

vulnerability.

Timeline
Date Action

2021-08-26 We report the XSS issue to the vendor and inform them of our
90-day disclosure policy

Date Action

2021-08-31 The vendor confirms the vulnerability

2021-09-23 We ask the Vendor for a status update (no reply)

2021-10-28 We ask the Vendor for a status update (no reply)

2022-02-17 We inform the vendor of the upcoming release

Summary
In this blog post, we presented an unusual XSS vulnerability in the Horde webmailer.

The vulnerability allows an attacker to craft a malicious OpenOffice document that,

when previewed as an email attachment, enables an attacker to steal all emails from

the victim. Since there is no official patch available yet, we highly recommend all

Horde users to disable the affected feature as described in this blog post.

In general, we recommend developers to always sanitize HTML documents after they

have been produced by XSLT rendering, especially when the conversion is performed

by a third party library or stylesheet. The most modern way of doing this would be to

use a library such as DOMPurify to ensure that only secure HTML elements are

produced by the OpenOffice document.

