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Introduction 

DNS, which is often described as the “phonebook of the internet”, is a 
network protocol for translating human-friendly computer hostnames into IP 
addresses. Because it is such a core component of the internet, there are 
many solutions and implementations of DNS servers out there, but only a 
few are extensively used. 

“Windows DNS Server” is the Microsoft implementation and is an essential 
part of and a requirement for a Windows Domain environment. 

SIGRed (CVE-2020-1350) is a wormable, critical vulnerability (CVSS base 
score of 10.0) in the Windows DNS server that affects Windows Server 
versions 2003 to 2019, and can be triggered by a malicious DNS response. 
As the service is running in elevated privileges (SYSTEM), if exploited 
successfully, an attacker is granted Domain Administrator rights, effectively 
compromising the entire corporate infrastructure. 

Motivation 

Our main goal was to find a vulnerability that would let an attacker 
compromise a Windows Domain environment, preferably unauthenticated. 
There is a lot of related research by various independent security 
researchers as well as those sponsored by nation-states. Most of the 
published and publicly available materials and exploits focus on Microsoft’s 
implementation of SMB (EternalBlue) and RDP (BlueKeep) protocols, as 
these targets affect both servers and endpoints. To obtain Domain Admin 
privileges, a straightforward approach is to directly exploit the Domain 
Controller. Therefore, we decided to focus our research on a less publicly 
explored attack surface that exists primarily on Windows Server and 
Domain Controllers. Enter WinDNS. 



Windows DNS Overview 

“Domain Name System (DNS) is one of the industry-standard suite of 
protocols that comprise TCP/IP, and together the DNS Client and DNS 
Server provide computer name-to-IP address mapping name resolution 
services to computers and users.” – Microsoft. 

DNS primarily uses the User Datagram Protocol (UDP) on port 53 to serve 
requests. DNS queries consist of a single UDP request from the client 
followed by a single UDP reply from the server. 

In addition to translating names to IP addresses, DNS serves other 
purposes as well. For example, mail transfer agents use DNS to find the 
best mail server to deliver e-mail: An MX record provides a mapping 
between a domain and a mail exchanger, which can provide an additional 
layer of fault tolerance and load distribution. A list of available DNS record 
types and their corresponding purposes can be found on Wikipedia. 

But the point of this blog post is not to present a lengthy discourse on DNS 
features and history, so we encourage you to read more about DNS here. 

What you need to know: 

• DNS operates over UDP/TCP port 53. 
• A single DNS message (response / query) is limited to 512 bytes in UDP and 

65,535 bytes in TCP. 
• DNS is hierarchal and decentralized in nature. This means when a DNS server 

doesn’t know the answer to a query it receives, the query is forwarded to a 
DNS server above it in the hierarchy. At the top of the hierarchy there are 13 
root DNS servers worldwide. 

In Windows, the DNS client and DNS server are implemented in two 
different modules: 

• DNS Client – dnsapi.dll is responsible for DNS resolving. 
• DNS Server – dns.exe is responsible for answering DNS queries on Windows 

Server, in which the DNS role is installed. 

Our research is centered around the dns.exe module. 

 



Preparing the Environment 

There are two main scenarios for our attack surface: 

1. A bug in the way the DNS server parses an incoming query. 
2. A bug in the way the DNS server parses a response (answer) for a forwarded 

query. 

As DNS queries do not have a complex structure, there is a lower chance of 
finding parsing issues in the first scenario, so we decided to target functions 
that parse incoming responses for forwarded queries. 

As mentioned previously, a forwarded query is the utilization of the DNS 
architecture to be able to forward queries it does not know the answer to – 
to the DNS server above it in the hierarchy. 

However, most environments configure their forwarders to well-known, 
respectable DNS servers such as 8.8.8.8 (Google) or 1.1.1.1 (Cloudflare), 
or at the very least a server that is not under the attacker’s control. 

This means that even if we find an issue in the parsing of DNS responses, 
we need to establish a Man-in-the-Middle to exploit it. Obviously, that’s not 
good enough. 

NS Records to the Rescue 

NS stands for ‘name server’ and this record indicates which DNS server is 
the authority for that domain (which server contains the actual DNS 
records). The NS record is usually in charge of resolving the subdomains of 
a given domain. A domain often has multiple NS records which can indicate 
primary and backup name servers for that domain. 

To have the target Windows DNS Server parse responses from our 
malicious DNS NameServer, we do the following: 

1. Configure our domain’s (deadbeef.fun) NS Records to point at our malicious 
DNS Server (ns1.41414141.club). 

2. Query the victim Windows DNS Server for NS Records of deadbeef.fun. 
3. The victim DNS, not yet knowing the answer for this query, forwards the query 

to the DNS server above it (8.8.8.8). 
4. The authoritative server (8.8.8.8) knows the answer, and responds that the 

NameServer of deadbeef.fun is ns1.41414141.club. 
5. The victim Windows DNS Server processes and caches this response. 



6. The next time we query for a subdomain of deadbeef.fun, the target Windows 
DNS Server will also query ns1.41414141.club for its response, as it is the 
NameServer for this domain. 

 
Figure 1: Packet capture of the victim DNS server querying our malicious 

server. 

The Vulnerability – CVE-2020-1350 

Function: dns.exe!SigWireRead 
Vulnerability Type: Integer Overflow leading to Heap-Based Buffer 
Overflow 

dns.exe implements a parsing function for every supported response type. 

 
Figure 2: Wire_CreateRecordFromWire: RRWireReadTable is passed 

to RR_DispatchFunctionForType to determine the handling function. 



 
Figure 3: RRWireReadTable and some of its supported response types. 

One of the supported response types is for a SIG query. According to 
Wikipedia, a SIG query is the “signature record used in SIG(0) (RFC 2931) 
and TKEY (RFC 2930). RFC 3755 designated RRSIG as the replacement 
for SIG for use within DNSSEC.” 

Let’s examine the disassembly generated by Cutter 
for dns.exe!SigWireRead – the handler function for the SIG response type: 

 
Figure 4: Disassembly of dns.exe!SigWireRead as seen in Cutter. 



The first parameter that is passed to RR_AllocateEx (the function responsible 
for allocating memory for the Resource Record) is calculated by the 
following formula: 

[Name_PacketNameToCountNameEx result] + [0x14] + [The Signature field’s length 
(rdi–rax)] 

The signature field size may vary as it is the primary payload of the SIG 
response. 

 
Figure 5: The structure of SIG Resource Record according to RFC 2535. 

As you can see in the image below, RR_AllocateEx expects its parameters to 
be passed in 16bit registers as it only uses the dx part of rdx and cx part 
of rcx. 

This means that if we can make the above formula output a result bigger 
than 65,535 bytes (the maximum value for a 16 bit integer), we have an 
integer overflow that leads to a much smaller allocation than expected, 
which hopefully leads to a heap based buffer overwrite. 



 
Figure 6: RR_AllocateEx converts its parameters to their 16bit value. 

Conveniently enough, this allocated memory address is then passed as a 
destination buffer for memcpy, leading to a Heap-Based buffer overflow. 

 
Figure 7: The allocated buffer from RR_AllocateEx is passed into memcpy. 

To summarize, by sending a DNS response that contains a large (bigger 
than 64KB) SIG record, we can cause a controlled heap-based buffer 
overflow of roughly 64KB over a small allocated buffer. 

 



Triggering the Vulnerability 

Now that we’re able to get the victim DNS server to query our DNS server 
for various questions, we have effectively turned it into a client. We can 
make the victim DNS server ask our malicious DNS server specific types of 
queries, and respectively answer with matching malicious responses. 

We thought that all we needed to trigger this vulnerability was to make the 
victim DNS server query us for a SIG record, and answer it a SIG response 
with a lengthy signature (length >= 64KB). We were disappointed to find 
that DNS over UDP has a size limit of 512 bytes (or 4,096 bytes if the 
server supports EDNS0). In any case, that is not enough to trigger the 
vulnerability. 

But what happens if there’s a legitimate reason for a server to send a 
response larger than 4,096 bytes? For example, a lengthy TXT response or 
a hostname that can be resolved to multiple IP addresses. 

DNS Truncation – But Wait, There’s More! 

According to the DNS RFC 5966: 
“In the absence of EDNS0 (Extension Mechanisms for DNS 0), the normal 
behavior of any DNS server needing to send a UDP response that would 
exceed the 512-byte limit is for the server to truncate the response so that it 
fits within that limit and then set the TC flag in the response header.  When 
the client receives such a response, it takes the TC flag as an indication 
that it should retry over TCP instead.” 

Great! So we can set the TC (truncation) flag in our response, which causes 
the target Windows DNS Server to initiate a new TCP connection to our 
malicious NameServer, and we can pass a message larger than 4,096 
bytes. But how much larger? 

According to DNS RFC 7766: 
“DNS clients and servers SHOULD pass the two-octet length field, and the 
message described by that length field, to the TCP layer at the same time 
(e.g., in a single “write” system call) to make it more likely that all the data 
will be transmitted in a single TCP segment.” 



As the first two bytes of the message represent its length, the maximum 
size of a message in DNS over TCP is represented as 16 bits and is 
therefore limited to 64KB. 

 
Figure 8: The first two bytes of a DNS over TCP message represent the 

message’s length. 

But even a message of length 65,535 is not large enough to trigger the 
vulnerability, as the message length includes the headers and the original 
query. This overhead is not taken into consideration when calculating the 
size that is passed to RR_AllocateEx. 

DNS Pointer Compression – Less is More 

Let’s have another look at a legitimate DNS response (we chose a 
response of type A for convenience). 



 
Figure 9: DNS response for dig research.checkpoint.com A @8.8.8.8, as seen 

in Wireshark. 

You can see that Wireshark evaluated the bytes 0xc00c in the answer’s 
name field to research.checkpoint.com. The question is, why? 

According to A warm welcome to DNS, powerdns.org: 
“To squeeze as much information as possible into the 512 bytes, DNS 
names can (and often MUST) be compressed… In this case, the DNS 
name of the answer is encoded as 0xc0 0x0c. The c0 part has the two most 
significant bits set, indicating that the following 6+8 bits are a pointer to 
somewhere earlier in the message. In this case, this points to position 12 (= 
0x0c) within the packet, which is immediately after the DNS header.” 

What is at the offset 0x0c (12) from the beginning of the packet? 
It’s research.checkpoint.com! 

In this form of compression, the pointer points at the start of an encoded 
string. In DNS, strings are encoded as a (<size><value>) chain. 



 
Figure 10: An illustration of a <size><value> chain. 

So we can use the “magic” byte 0xc0 to reference strings from within the 
packet. Let’s once again examine the formula that calculates the size that is 
passed to RR_AllocateEx: 

[Name_PacketNameToCountNameEx result] + [0x14] + [The Signature field’s length 
(rdi–rax)] 

Reversing Name_PacketNameToCountNameEx confirms the behavior we described 
above. The purpose of Name_PacketNameToCountNameEx is to calculate the size 
of a name field, taking pointer compression into consideration. Having a 
primitive that allows us to increase the size of the allocation by a large 
amount, when only representing it with two bytes, is exactly what we need. 

Therefore, we can use the pointer compression in the SIG Signer’s Name 
field. However, simply specifying 0xc00c as the Signer’s name would not 
cause the overflow, as the queried domain name is already present in the 
query, and the overhead size is subtracted from the allocated value. But 
what about 0xc00d? The only constraint we have to satisfy is that our 
encoded string is valid (ending with 0x0000), and we can do it easily because 
we have a field without any character constraints – the signature value. For 



the domain 41414141.fun, 0xc00d points at the first character of the domain 
(‘4’). The ordinal value of this character is then used as the size of the 
uncompressed string (‘4’ represents the value 0x34 (52)). Aggregation of 
the size of this uncompressed string, with the maximum amount of data we 
can fit in the Signature field (up to 65,535, depending on the original query), 
results in a value greater than 65,535 bytes, thus causing the overflow! 

Let’s test this with WinDBG attached to dns.exe: 

 
We crashed! 

Although it seems that we crashed because we were trying to write values 
to unmapped memory, the heap can be shaped in a way that allows us to 
overwrite some meaningful values. 

Previous exploitation attempts for dns.exe are available online. For 
example: A deeper look at ms11-058. 

Triggering From the Browser 

We know this bug can be triggered by a malicious actor who is present in 
the LAN environment. However, we thought it would be interesting to see if 
this bug can be triggered remotely without LAN access. 

Smuggling DNS inside HTTP 

By now you should be aware that DNS can be transported over TCP and 
that Windows DNS Server supports this connection type. You should also 
be familiar with the structure of DNS over TCP, but just in case, here’s a 
quick review: 



 
Figure 11: DNS over TCP message format. 

Consider the following standard HTTP payload: 

0000   50 4f 53 54 20 2f 70 77 6e 20 48 54 54 50 2f 31   POST /pwn 
HTTP/1 
0010   2e 31 0d 0a 41 63 63 65 70 74 3a 20 2a 2f 2a 0d   .1..Accept: 
*/*. 
0020   0a 52 65 66 65 72 65 72 3a 20 68 74 74 70 3a 2f   .Referer: 
http:/ 
Even though this is an HTTP payload, sending it to our target DNS server 
on port 53 causes the Windows DNS Server to interpret this payload as if it 
was a DNS query. It does this using the following structure: 

0000   50 4f 53 54 20 2f 70 77 6e 20 48 54 54 50 2f 31   POST /pwn 
HTTP/1 
0010   2e 31 0d 0a 41 63 63 65 70 74 3a 20 2a 2f 2a 0d   .1..Accept: 
*/*. 
0020   0a 52 65 66 65 72 65 72 3a 20 68 74 74 70 3a 2f   .Referer: 
http:/ 
 



Message Length: 20559 (0x504f) 
Transaction ID: 0x5354 
Flags: 0x202f 
Questions: 28791 (0x7077) 
Answer RRs: 28192 (0x6e20) 
Authority RRs: 18516 (0x4854) 
Additional RRs: 21584 (0x5450) 
Queries: [...] 
Fortunately, Windows DNS Server supports both “Connection Reuse” and 
“Pipelining” of RFC 7766, which means we can issue multiple queries over 
a single TCP session and we can do so without waiting for replies. 

Why is this important? 

We can use basic JavaScript to issue a POST request to the DNS Server 
from the browser when a victim visits a website we control. But as shown 
above, the POST request is interpreted in a manner we don’t really control. 

However, we can abuse the “Connection Reuse” and “Pipelining” features 
by sending an HTTP POST request to the target DNS server 
(https://target-dns:53/) with binary data, containing another “smuggled” 
DNS query in the POST data, to be queried separately. 

Our HTTP payload consists of the following: 

• HTTP request headers that we do not control (User-Agent, Referer, etc). 
• “Padding” so that the first DNS query has a proper length (0x504f) inside the 

POST data. 
• Our “smuggled” DNS query inside the POST data. 



 
Figure 12: Multiple queries over a single TCP session as seen in Wireshark. 

In practice, most popular browsers (such as Google Chrome and Mozilla 
Firefox) do not allow HTTP requests to port 53, so this bug can only be 
exploited in a limited set of web browsers – including Internet Explorer and 
Microsoft Edge (non-Chromium based). 

Variant Analysis 

The primary reason that this bug exists is because the RR_AllocateEx API 
expects a size parameter of 16 bits. It is generally safe to assume that the 
size of a single DNS message does not exceed 64KB and thus this 
behavior should not present an issue. However, as we just saw, this 
assumption is wrong when the result of Name_PacketNameToCountNameEx is 
taken into consideration while calculating the size of the buffer. This 



happens because the Name_PacketNameToCountNameEx function calculates the 
effective size of the uncompressed name and not the number of bytes it 
took to represent it in the packet. 

To find other variants of this bug, we need to find a function that satisfies 
the following conditions: 

• RR_AllocateEx is called with a variable size (and not a constant value). 
• There is a call to Name_PacketNameToCountNameEx and its result is used to 

calculate the size passed to RR_AllocateEx. 
• The value that is passed to RR_AllocateEx is calculated using values in the 

range of 16bits or more. 

The only other function in dns.exe that satisfied these three conditions 
is NsecWireRead. Let’s examine the following simplified code snippet we 
deduced from decompiling the function: 

RESOURCE_RECORD*	NsecWireRead(PARSED_WIRE_RECORD	*pParsedWireRecord,	DNS_PACKET	*pPacket,	BYTE	
*pRecordData,	WORD	wRecordDataLength) 
{ 
DNS_RESOURCE_RECORD	*pResourceRecord; 
unsigned	BYTE	*pCurrentPos; 
unsigned	int	dwRemainingDataLength; 
unsigned	int	dwBytesRead; 
unsigned	int	dwAllocationSize; 
DNS_COUNT_NAME	countName; 
pResourceRecord	=	NULL; 
pCurrentPos	=	Name_PacketNameToCountNameEx(&countName,	pPacket,	pRecordData,	pRecordData	+	
wRecordDataLength,	0); 
if	(pCurrentPos) 
{ 
if 
(pCurrentPos	>=	pRecordData	//	<--	Check	#1	-	Bounds	check 
&&	pCurrentPos	-	pRecordData	<=	0xFFFFFFFF	//	<--	Check	#2	-	Same	bounds	check	(?) 
&&	wRecordDataLength	>=	(unsigned	int)(pCurrentPos	-	pRecordData))	//	<--	Check	#3	-	Bounds	check 
{ 
dwRemainingDataLength	=	wRecordDataLength	-	(pCurrentPos	-	pRecordData); 
dwBytesRead	=	countName.bNameLength	+	2; 
//	size	:=	len(countName)	+	2	+	len(payload) 
dwAllocationSize	=	dwBytesRead	+	dwRemainingDataLength; 
if	(dwBytesRead	+	dwRemainingDataLength	>=	dwBytesRead	//	<--	Check	#4	-	Integer	Overflow	check	(32	bits) 
&&	dwAllocationSize	<=	0xFFFF)	//	<--	Check	#5	-	Integer	Overflow	check	(16	bits) 
{ 
pResourceRecord	=	RR_AllocateEx(dwAllocationSize,	0,	0); 
if	(pResourceRecord) 
{ 
Name_CopyCountName(&pResourceRecord->data,	&countName); 
memcpy(&pResourceRecord->data	+	pResourceRecord->data->bOffset	+	2,	pCurrentPos,	dwRemainingDataLength); 
} 
} 
} 
} 



return	pResourceRecord; 
} 

As you can see, this function contains many security checks. One of them 
(Check #5) is a 16 bit overflow check that prevents the variant of our 
vulnerability in this function. We would also like to mention that this function 
has many more security checks than the average function in dns.exe, which 
makes us wonder if this bug was already noticed and fixed, but only in that 
specific function. 

As we mentioned previously, Microsoft implemented the DNS client and 
DNS server in two different modules. While our vulnerability definitely exists 
in the DNS server, we wanted to see if it exists in the DNS client as well. 

 
Figure 13: Disassembly snippet of Sig_RecordRead from dnsapi.dll. 

It appears that, 
unlike dns.exe!SigWireRead, dnsapi.dll!Sig_RecordRead does validate 
at Sig_RecordRead+D0 that the value that is passed 
to dnsapi.dll!Dns_AllocateRecordEx is less than 0xFFFF bytes, thus 
preventing the overflow. 

The fact that this vulnerability does not exist in dnsapi.dll, as well as having 
different naming conventions between the two modules, leads us to believe 
that Microsoft manages two completely different code bases for the DNS 
server and the DNS client, and does not synchronize bug patches between 
them. 



Exploitation Plan 

Per Microsoft’s request, we decided to withhold information about the 
exploitation primitives in order to give users enough time to patch their DNS 
servers. Instead, we discuss our exploitation plan as it applies to Windows 
Server 2012R2. However, we do believe that this plan should apply to other 
versions of Windows Server as well. 

The dns.exe binary was compiled with Control Flow Guard (CFG), which 
means the traditional approach of overwriting a function pointer in memory 
is not enough to exploit this bug. If this binary was not compiled with CFG, 
exploiting this bug would be pretty straight-forward, as quite early on we 
encountered the following crash: 

 
Figure 14: Crash at ntdll!LdrpValidateUserCallTarget. 

As you can see, we crashed at ntdll!LdrpValidateUserCallTarget. This is the 
function responsible for validating function pointer targets as part of CFG. 
We can see that the pointer to be validated (rcx) is fully controllable, which 
means that we successfully overwrote a function pointer somewhere along 
the way. The reason we saw a crash is that the function pointer is used as 
an index to a global bitmap table with “allowed” / “disallowed” bit per 
address, and our arbitrary address led to a read from an unmapped page in 
the table itself. 

To exploit this bug to a full Remote Code Execution while defeating CFG, 
we need to find primitives that give us the following capabilities: write-what-
where (to precisely overwrite a return address on the stack) and an infoleak 
(to leak memory addresses, such as the stack). 

Infoleak 



In order to achieve an Infoleak primitive, we corrupted the metadata of a 
DNS resource record, while it is still in the cache, using our overflow. Then, 
when queried again from the cache, we were able to leak adjacent heap 
memory. 

WinDNS’ Heap Manager 

WinDNS uses the function Mem_Alloc to dynamically allocate memory. This 
function manages its own memory pools to be used as an efficient cache. 
There are 4 memory pool buckets for different allocation sizes (up to 0x50, 
0x68, 0x88, 0xA0). If the requested allocation size is greater than 0xA0 
bytes, it defaults to HeapAlloc, which uses the native Windows heap. The 
heap manager allocates an additional 0x10 bytes for the memory pool 
header, which contains metadata including the buffer’s type (allocated / 
free), a pointer to the next available chunk of memory, a cookie for debug 
checks, and more. The heap manager implemented its allocation lists in a 
singly-linked-list fashion, meaning that chunks are allocated in the reverse 
order that they were freed (LIFO). 

Write-What-Where 

To achieve a write-what-where primitive, we attacked the WinDNS heap 
manager by corrupting a chunk’s header (metadata), de-facto corrupting the 
freelist. 

After the freelist is corrupted, the next time we try to allocate anything of the 
right size, the memory allocator assigns a memory region of our choice for 
us as a writable allocation – a “Malloc-Where” exploit primitive. 

To bypass CFG, we want that memory region to be on the stack (whose 
location we hopefully know thanks to the infoleak). Once we have a write 
capability on the stack, we can overwrite a return address to an address we 
want to execute, effectively hijacking the execution flow. 

It is important to mention that by default, the DNS service restarts in the first 
3 crashes, increasing the chances for successful exploitation. 

 

 



Conclusion 

This high-severity vulnerability was acknowledged by Microsoft and was 
assigned CVE-2020-1350. 

We believe that the likelihood of this vulnerability being exploited is high, as 
we internally found all of the primitives required to exploit this bug. Due to 
time constraints, we did not continue to pursue the exploitation of the bug 
(which includes chaining together all of the exploitation primitives), but we 
do believe that a determined attacker will be able to exploit it. Successful 
exploitation of this vulnerability would have a severe impact, as you can 
often find unpatched Windows Domain environments, especially Domain 
Controllers. In addition, some Internet Service Providers (ISPs) may even 
have set up their public DNS servers as WinDNS. 

We strongly recommend users to patch their affected Windows DNS 
Servers in order to prevent the exploitation of this vulnerability. 

As a temporary workaround, until the patch is applied, we suggest setting 
the maximum length of a DNS message (over TCP) to 0xFF00, which 
should eliminate the vulnerability. You can do so by executing the following 
commands: 

reg	add	"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNS\Parameters"	/v	
"TcpReceivePacketSize"	/t	REG_DWORD	/d	0xFF00	/f 
net	stop	DNS	&&	net	start	DNS 

Check Point IPS blade provides protection against this threat: 
“Microsoft Windows DNS Server Remote Code Execution (CVE-2020-
1350)” 

Check Point SandBlast Agent E83.11 already protects against this threat 

Disclosure Timeline 
• 19 May 2020 – Initial report to Microsoft. 
• 18 Jun 2020 – Microsoft issued CVE-2020-1350 to this vulnerability. 
• 09 Jul 2020 – Microsoft acknowledged this issue as a wormable, critical 

vulnerability with a CVSS score of 10.0. 
• 14 Jul 2020 – Microsoft released a fix (Patch Tuesday). 

 


