

Arris / Arris-variant DSL/Fiber
router critical vulnerability
exposure
NOTE:	This	issue	has	been	patched	and	deployed	by	at	least	one	ISP,	whose	BGW	
routers	use	a	customized	variant	of	Arris	NVG	firmware.
Multiple vulnerabilities exist in the MIT-licensed muhttpd web server. This web server is
widely used in ISP customer premise equipment (CPE), most notably in Arris firmware used
in router models (at least, possibly other) NVG443, NVG599, NVG589, NVG510, as well as
ISP-customized variants such as BGW210 and BGW320 (Arris has declined to confirm
affected models). These routers are typically loaned to ISP subscribers for telephony and
Internet access. The most severe vulnerability allows unauthenticated path traversal from
the root of the file system as the root user. It is possible to recover the WiFi access code and
SSID, remote administration password, SIP credentials (if VoIP is supported), ISP CWMP/TR-
069 endpoint URLs and their username and password as well as other sensitive information,
although some parts may require more complicated techniques or computing resources that
may not be available to all attackers. Network-based unauthenticated exploitation is most
severe if the router’s web services (such as the administration portal) are exposed to the
Internet, though it can also be exploited on the LAN. According to Censys (link redacted to
limit targeting), there	are	at	least	19,000	Internet-facing	likely	vulnerable	routers	
exposed	directly	to	the	Internet	(at	the	time	of	writing,	though	patching	since	
private	disclosure	has	greatly	reduced	this	number) over US, European and APAC
ISPs, impacting both residential and business clients. There are millions more that are not
Internet-facing or not easily identifiable from the Internet (depending on aggregate ISP
deployment footprint).

Prior to the patch in version 1.1.7 (released June 1st, 2022), muhttpd was last released in
2010 (version 1.1.5), and the path traversal issue appears present in the initial commit of the
muhttpd source in 2006. Additionally, the vulnerability appears to be present in the earliest
versions of the Arris firmware (or any firmware that forks the Arris firmware). Testing
confirms presence in at least version 2.7.7 (2020) in a BGW210-700 gateway. Thus, it should
be assumed information and access detailed in this report was obtainable for at least several
years, if not from the first launch of all NVG/BGW products.

A working proof-of-concept exploit exists that can do the following without authentication:

• Download any non-directory, non-special file from the device.
• Loot secrets from the device database through /etc/config.cfg, including every

WiFi SSID broadcast by the device and their corresponding access codes,
management passwords, the device pin, and CWMP endpoint and credential

information** (some router models may encrypt portions of this information, though
the encryption implementation is flawed–see below).

• Deobfuscate any file in the proprietary “XMLC” file format (the device config
database “/etc/config.cfg” is in this format, as well as the web server private
key)

• Enumerate all processes, their environment variables and command line arguments.
• Parse the mfg.dat/calibration_01.bin file to extract secrets such as the default

access code and pin (this file can be obtained by using the file download functionality
of the exploit while the router is booting by repeatedly requesting the file as it is
temporarily mounted during boot).

Additionally, another proof-of-concept decryption tool exists that can decrypt any base64-
encoded device secret from the deobfuscated /etc/config.cfg if given a device serial
number, default WiFi access code, “board id” and certificate (all of which are obtainable via
the Internet, except for the certificate – see “decrypting secrets” below).

Neither proof of concept will be released to the public.

Disclosure timeline
April 6th, 2022: Initial disclosure to Arris
April 9th, 2022: Initial submission to CERT/CC for coordination with other affected ISPs
April 11th, 2022: Response from CERT/CC
April 14th, 2022: Response from Arris from initial report received
April 25th, 2022: Arris confirms the path traversal vulnerability
April 26th, 2022: Disclosure to an affected ISP
May 4th, 2022: Patches roll out to aforementioned affected ISP subscribers
May 9th, 2022: Arris confirms a patch has been created for the path traversal and URL
decoder vulnerabilities
May 10th, 2022: Aforementioned ISP formally confirms fix
May 27th, 2022: Moved disclosure date to June 30th from June 6th.
May 27th, 2022: Assigned CVE-2022-31793 to vulnerability #1
May 28th, 2022: Notified original developer of muhttpd of vulnerability details
May 30th, 2022: Original muhttpd developer crafts patch and awaits disclosure
June 8th, 2022: No updates in CERT case. Reached out to 3 additional additional ISPs via
linkedin (no public contact information available). Received one response (ISP “B”).
June 13th, 2022: ISP “B” is given full disclosure details.
June 22nd, 2022: ISP “B” acknowledges receipt, no further questions or extension request.
June 29th, 2022: Publish date moved to July 29th, 2022 to allow more ISPs to deploy
patches.
July 29th, 2022: Public disclosure

Vulnerability 1 (CVE-2022-31793):
Path traversal from the filesystem root
Mitigation:	Stop	the	web	server,	or	firewall	it	from	untrusted	networks	(Internet,	
LAN).	For	affected	Arris-based	gateways:	Disable	remote	management,	or	firewall	
the	remote	access	ports	from	the	Internet.	This	does	not	stop	LAN	(Ethernet	or	

WiFi)	exploitation,	however.	For	regular	users	of	muhttpd:	Upgrade	to	version	
1.1.7.
The muhttpd server 1.1.5 (last official release 2010) has a path traversal vulnerability.
Exploitation is trivial: Simply prepending a single character (or hexit such as %0a, with the
exception of %00 as it is a NUL byte) that is not a dot (“.”), forward slash (“/”) or question
mark (“?”) before the requested path is sufficient to obtain any regular file on the device
(the server does restrict directory listing and special file – such as symlinks and block devices
– access):
curl --ignore-content-length -X"GET a/etc/hosts" http://<ip>:<port>
The above command will cause curl to issue a “GET a/etc/hosts / HTTP/1.0” request to
the remote endpoint. The muhttpd server will happily ignore the extra “/“ prior to the HTTP
protocol in the request. In fact, the exploit can be simplified to (plaintext HTTP):
printf "GET a/etc/hosts\n\n" | nc server port

To test this on a suspected vulnerable device over the LAN, assuming the gateway IP is
192.168.1.254:

printf "GET a/etc/hosts\n\n" | nc 192.168.1.254 80
The root cause of this issue is fairly straightforward: The server references the path
component of the URL using the C code &filename[1], which effectively skips over the first
letter (a/etc/hosts becomes /etc/hosts). No checks are done prior to handling the request
to jail any paths under the web root (the server process is simply chdir()’d into the web
root), although the path is sanitized before it gets to this point to strip out “../” sequences:
 /*	Open	file	*/
 fd = open(&req->filename[1], O_RDONLY);
 if(fd < 0) {
 /*	open	failed,	inform	client	*/
 if(req->status != HTTP_200) {
 /*	Unable	to	send	error	document;	send	error	message	*/
 send_status_message(req);

Practical exploitation for millions of routers
For any router using an Arris-based firmware containing this web server, an unauthenticated
remote (if remote administration is enabled) or local (LAN) party can obtain:

• The	contents	of	the	md5crypt	(salted/hashed)	passwords	in	/etc/passwd,
which can be passed to password cracking rigs to identify the administrator password
to change configuration settings on the device. The “remote” account corresponds
to the remote management password (remote administration).

• Via the device “sdb” database file located at /etc/config.cfg (requires extra
steps, see the sections on deobfuscation and decryption below):

• The	SSID	and	plaintext	password	of	the	2G	and	5G	WiFi	
networks broadcast by the device, and their independent on/off states.

• The	usernames	and	(sometimes	encrypted)	passwords	of	all	
administration	accounts	on	the	system. Several accounts (administrator,
dslf-config) have passwords set to the device pin (printed on a sticker on the
device itself).

• ISP	TR-069	/	CWMP	ACS	and	CR	configuration	information,	including	
CWMP	endpoint	URLs,	logging	urls	and	their	usernames	and	

passwords (sometimes encrypted), per subscriber (unknown if any are
shared).

• SIP	usernames	(phone	numbers)	and	passwords,	including	SIP	
endpoint	URLs.

• Port	forwarding	configuration	information,	including	the	external	
port,	internal	port	and	mac	address of the device which has a port
forward configuration. When combined with the LAN device list, it can enable
more sophisticated targeting.

• Sensitive network information, such as established TCP connections and the router’s
ARP table and various MAC addresses, via the proc filesystem. The	MAC	address	of	
the	wireless	networks	(BSSID)	can	be	used	to	geolocate	these	routers	via	
wigle.net.

• Various	system	&	firewall	logs, such
as /var/log/system.log.1, /var/log/firewall.log, etc.

• A	complete	list	of	the	LAN	IP	address,	hostname,	MAC,	uptime,	and	device	
characteristics	such	as	the	operating	system	and	known	applications	of	
every	device	on	the	LAN via several files on the router
(/var/tmp/cwmp.lhd, /var/etc/hostdb.gz, …)

• The	router	serial	number (via /sys/motopia/serial_number, /etc/hosts and
elsewhere) and model number (via /sys/motopia/dsl_eoc_string, though this
does not appear to be on BGW320 devices) of the device.

• The certificate	and	private	key for the web management portal (requires
deobfuscation, same as /etc/config.cfg*) and internal web services the device
uses.

• Router	process	information	can	be	brute	forced	by	walking	the	proc	
filesystem (/proc/<pid>/...), including obtaining each process executable, its
command line, its environment, etc. Process memory cannot be retrieved since the
code that sends the byte stream of file data does not support range requests, and
reading from the address 0x0 is not allowed.

A non-exhaustive list of example attack scenarios:

• An actor scans the internet for vulnerable devices, downloads the device
configuration database (/etc/config.cfg files) and deobfuscates them using the
proof-of-concept. The actor then grabs the management password for each endpoint
from the deobfuscated configuration file, logs into the router web admin portal over
the Internet and reconfigures the network.

• An actor uses the above method to grab CWMP credentials and attempts
to reconfigure a subscriber’s router configuration via the ISP.

• In the case the management password is obtained, it would be possible to
surreptitiously add port forwarding rules and additional WiFi network configurations
for some level of persistence into the network. For example:

• An attacker could expose a LAN device to the Internet over its Remote
Desktop Protocol (RDP) port, then run a secondary exploit/credential stuffing
attacks on that host.

• An attacker could expose a database server’s port to the Internet and
potentially leverage a misconfiguration / LAN trust relationship to download /
retrieve data.

• A semi-sophisticated actor may choose to identify vulnerable devices of interest for a
victim corporation, government or critical infrastructure provider. They would:

1. Enumerate all LAN devices, router serial numbers, WiFi SSIDs, BSSIDs and
passwords from every device exposed to the Internet (roughly 19K exposed).

2. Filter / select which targets based on certain criteria, such as corporate device
asset hostname naming patterns, physical location (proximity to the attacker),
types of applications on the network (Tesla vehicles use their model name as
their hostname, and some devices such as Tesla Powerwalls have been known
to use their hostname as their password, etc.

3. Geolocate those devices using the BSSID of the router (obtainable through
the proc filesystem) and wigle.net.

4. Physically visit the location of the router, authenticate to the device wirelessly
using credentials from the configuration database obtained via exploitation,
and launch further attacks on LAN devices.

File obfuscation and the device configuration
database
Certain files on Arris-based routers, such as dropbear and HTTPS RSA keys (for the web
portal and other HTTP-based services), SKU-specific configuration files, and the contents
of /etc/config.cfg (the device configuration database) appear to be in a proprietary
binary data format, with an “XMLC” header. Binwalk indicates these files have fairly high
entropy, indicating obfuscation, compression or encryption:

(right click/secondary select and open in a new tab to view
larger)

results of `binwalk -E on /etc/config.cfg` – entropy is extremely high indicating the file is

obfuscated or encrypted.
However, the HTTPS private key is read by muhttpd, and reading a private key and certificate
has existed in the original source code for SSL/TLS support, while the original source does
not support this file format. As it would turn out, the	modified/customized	muhttpd	
binary	shipping	in	the	firmware	of	these	routers	has	the	ability	to	deobfuscate	
files	from	this	proprietary	format. More specifically, the ssl-key parameter in the
muhttpd server configuration file references the private key that must be in this format.
After deobfuscating, the binary will pipe the data to /bin/gzip to deflate the contents to
their plaintext form, then pipe the output of gzip back into its own process to set the server
key:

(right click/secondary select and open in a new tab to view
larger)

Normal flow for reading the https.key (obfuscated in proprietary XMLC format) for the Arris-

customized muhttpd
This chain of custody issue (using an untrusted external program, /bin/gzip) can be
exploited to avoid reverse engineering the proprietary file format. Thus, to restore any file in
this format back to its original content, you	can	deobfuscate	it	in	a	docker	container	by	
abusing	the	/bin/gzip	relationship	with	muhttpd:

1. Download the necessary executable binaries and libraries from the device (muhttpd
and its required libraries in /lib)

2. Download the target file encoded in this format (https keys, /etc/config.cfg, etc.)
Create a fake httpd.conf file with its ssl-key parameter set to the XMLC filename
we want to decode.

3. Create a fake /bin/gzip with a small script (chmod +x) that copies /dev/stdin to a
resulting file on the mounted docker volume:
cp /dev/stdin /some/volume/mounted/to/host/output.gz

4. Set necessary file permissions, volume mounts (for the libs, muhttpd binary, fake gzip
and httpd.conf file) and execute muhttpd in the container.

(right click/secondary select and open in a new tab to view
larger)

Abusive flow for deobfuscating any file in the proprietary XMLC file format

The muhttpd server will fail to launch if the result of deobfuscating the input file is not an
RSA key. However, that doesn’t matter since it would’ve already piped the contents to (a
fake) /bin/gzip. The point of the container is only to get to that point, not run a functional

muhttpd server (though that is indeed possible with a bit of work). The result is a completely
deobfuscated version of the input XMLC file. Note that non-XML files are encoded in this
format (RSA private keys). The letters “XML” in “XMLC” seem to bear no relationship to the
deobfuscated content (i.e., don’t always expect the content to be XML once deobfuscated).
The deobfuscated content itself is gzipped, so you must decompress it first (technically, we
could’ve piped it to the real /bin/gzip before writing output.gz).
A proof-of-concept exists that has the ability to deobfuscate /etc/config.cfg (the device
database) and other files in the XMLC file format using the above method (assuming docker
and a few python libraries are installed). A deobfuscated /etc/config.cfg would look
something like this (heavily truncated/redacted and will differ based on the router model,
firmware and ISP), versus the binary blob of data you would otherwise see without
deobfuscating:
<?xml	version="1.0"	encoding="UTF-8"?>
<config>
 <cgn>
 <MaxTCPInternalPortsUsed>1377</MaxTCPInternalPortsUsed>
 <MaxTCPUserPortsUsed>5528</MaxTCPUserPortsUsed>
 <MaxUDPInternalPortsUsed>3993</MaxUDPInternalPortsUsed>
 <MaxUDPUserPortsUsed>592</MaxUDPUserPortsUsed>
 <MaxOtherInternalPortsUsed>1</MaxOtherInternalPortsUsed>
 <MaxOtherUserPortsUsed>84</MaxOtherUserPortsUsed>
 </cgn>
 <tai>
 <config>
 <enable-v-zone-ad notify="active" setby="4">on</enable-v-zone-ad>
 <carousel-ip-addr notify="active" setby="4"><<REDACTED>></carousel-ip-
addr>
 <carousel-port notify="none" setby="4"><<REDACTED>></carousel-port>
 <key-identification-counter notify="none" setby="4">19</key-
identification-counter>
 <authentication-key notify="none" setby="4"><<REDACTED>></authentication-
key>
 </config>
 </tai>
 <system>
 <timezone notify="none" setby="4">PST8PDT</timezone>
<< CUT >>
 <microservice>
 <execution-environment name=" ">
 <status>Up</status>
 <upgrade-status>off</upgrade-status>
 <registry-password><<REDACTED, ENCRYPTED>></registry-password>
 <manifest-server-password><<REDACTED, ENCRYPTED>></manifest-server-
password>
 <registry-pswd-flag>on-1</registry-pswd-flag>
 <manifest-server-pswd-flag>on-1</manifest-server-pswd-flag>
 <reboot-status>off</reboot-status>
 </execution-environment>
<< CUT >>
 <cwmp>
 <acs-url notify="active" setby="4"><<REDACTED>></acs-url>
 <acs-password notify="active"><<REDACTED, ENCRYPTED>></acs-password>
 <acs-pwd-flag>on-1</acs-pwd-flag>
 <cr-url notify="active">/XML/001E46-<<REDACTED>>.xml</cr-url>
 <cr-username notify="active" setby="4">001E46-<<REDACTED>></cr-username>

 <cr-password notify="active" setby="4"><<REDACTED, ENCRYPTED>></cr-
password>
 <cr-pwd-flag setby="4">on-2</cr-pwd-flag>
 <param-key setby="4">1</param-key>
 <periodic-inform>
 <enable notify="none" setby="4">on</enable>
 <interval notify="none" setby="4">86400</interval>
 <time setby="4">2021-11-08T04:00:00Z</time>
 </periodic-inform>
 <sbdc>
 <enable notify="none">on</enable>
 <request-port>61001</request-port>
 <request-url>001E46_<<REDACTED>></request-url>
 <ssl-enable>on</ssl-enable>
 <max-sessions>8</max-sessions>
<< CUT >>
 <phy>
 <enet name="wan" id="7">
 <port id="7">
 <media-type>copper</media-type>
 </port>
 </enet>
 <wl80211 id="1" version="1.0">
 <enable>on</enable>
 <radio notify="active">on</radio>
 <ssid id="1" version="1.0">
 <enable notify="active">on</enable>
 <ssid-name notify="active">homenet</ssid-name>
 <passphrase notify="active">hunter2!</passphrase>
 </ssid>
 <ssid id="2" version="1.0">
 <enable notify="active">off</enable>
 <ssid-name notify="active" setby="4"><<REDACTED>>_Guest</ssid-name>
 <passphrase notify="active">test123!</passphrase>
 <admin-access-enable>off</admin-access-enable>
 <wired-access-enable>off</wired-access-enable>
 </ssid>

<< CUT >>
 <voice>
 <profile id="1">
 <sip-publish-invocation setby="4">endofcall</sip-publish-invocation>
 <sip-advanced-setting>
 <sip-digit-map notify="none"
setby="4">O=15,I=6,S=3(*#101<:@C03>|*#103<:@C06>|T0|T*xx|T*xxx|[2-
9]11|[01]911|988|1[2-9]xxxxxxxxx|T[2-9]xxxxxx|[2-9]xxxxxxxxx|n.)</sip-digit-map>
 <sip-allow-ip-list setby="4"><<REDACTED>></sip-allow-ip-list>
 </sip-advanced-setting>
 <user-account name="1" id="1">
 <enable notify="none" setby="4">off</enable>
 <sip-user-password/>
 <sip-user-password-flag>off</sip-user-password-flag>
 </user-account>
 <user-account name="2" id="2">
 <sip-user-password/>
 <sip-user-password-flag>off</sip-user-password-flag>
 </user-account>
 <user-account name="3" id="3">

 <sip-user-password/>
 <sip-user-password-flag>off</sip-user-password-flag>
 </user-account>
 <user-account name="4" id="4">
 <sip-user-password/>
 <sip-user-password-flag>off</sip-user-password-flag>
 </user-account>
 </profile>

An example of the contents of a deobfuscated `/etc/config.cfg` from a BGW router. The
microservice environment appears to be a docker environment for running speed test

software. Note that this specific router did not have VoIP enabled, so no SIP passwords are
present in this instance.

Decrypting secrets
The firmware may encrypt plaintext secrets in the /etc/config.cfg file (see “REDACTED,
ENCRYPTED” markers above) using AES-128-CBC (default padding). The AES ciphertext is
encoded using base64 before writing to the configuration database (/etc/config.cfg),
which itself is obfuscated using a proprietary “XMLC” file format (see below on
deobfuscation). However, the encryption is particularly weak due to a number of issues and
is susceptible to fixed-value, brute force or lookup table attacks.
Given	a	base64-encoded	ciphertext,	is	it	possible	to	recover	the	plaintext? Let’s
assess.
The AES 16-byte (128 bit) key is derived from two invocations of Argon2i, a modern hashing
algorithm. In both phases, Argon2 is run with a t_cost of 2, memory of 4096KiB, and
parallelism of 1. First, an 8-byte key salt is computed by the firmware. This salt is created by
utilizing the byte stream of a DER-encoded client certificate embedded in the device at
manufacture time as the password, while using a fixed 8-byte string as the salt. However,
interestingly, the code copies the certificate DER byte array to a separate buffer using
strlcpy() before hashing with Argon2i. Use	of	strlcpy()	effectively	arbitrarily	chops	
the	client	certificate	bytes	to	the	first	NUL	terminator	encountered	in	the	DER	
certificate	byte	array (as the str*cpy functions operate on strings and consider a
NUL \x00 to be the end of a string), greatly reducing or eliminating the entropy used in the
hash function:

(right click/secondary select and open in a new tab to view
larger)

Interestingly, this defect is similar to the strcmp issue that enabled the Nintendo home brew
scene, and points to a misunderstanding of the source data being used, or the effect of
string operations on non-string data. The key salt is then fed into Argon2i again (this time
with a hashlen of 16 bytes, corresponding to the 128-bit AES key length), with the password
in this second invocation set to a computed string based on the default WiFi access code, the
device serial number, and board id:

(right click/secondary select and open in a new tab to view
larger)

Given vulnerability #1, the device serial number, wifi access code, and board ID are known.
The serial number is obtainable in a number of places, such
as /sys/motopia/serial_number, /etc/hosts, and various log files. The WiFi access
code can be obtained through /etc/config.cfg (once deobfuscated, see below) unless
customized by a user, or it can be viewed in plaintext in the management user interface (if
the user has the access pin, which is printed on the device). The board ID is a single byte
value which is printed in /var/log/system.log{,.1,.2} (also obtainable with the same
vulnerability), and appears to be a simple, short enumeration (BGW210 devices use 0x1c,
BGW320 devices use 0x1e or 0x1f depending on the manufacturer). Thus, the password “A”
is assumed to be completely known.
Knowledge	of	“A”	(through	information	easily	obtained	over	the	network	via	the	
muhttpd	vulnerability)	in	effect	renders	the	128-bit	AES	encryption	to	64	bits	(the	
same	as	the	salt	“C”).

Thus, we are left with a few methods of obtaining the salt value “C” to recover the AES key
and decrypt any secrets encrypted using this key generation methodology:

• Obtaining	the	certificate	via	reboot	&	exploitation. This is less interesting,
because a reboot would require social engineering or physical access. The certificate
can be obtained via a router reboot, while repeatedly requesting the /mfg/mfg.dat
file on BGW210-700 models using vulnerability #1 (or /mfg/calibration_01.bin on
BGW320-500 models). The client, intermediate and root certificates as well as the
private key exist at offset -16384 (that is, from the end of the file) of mfg.dat. This file
is mounted temporarily during bootup and after the muhttpd server is online, but it
appears it is unmounted prior to the WAN interface going live.

• Brute-forcing	2^64	possible	values	of	the	salt. With the right hardware it may
be possible to brute force the correct value for C by trying all 2^64 or
1.844674407x10^9 combinations of values. The required computational power for
this likely makes it impractical for the casual attacker except for a select few
organizations (possibly state-aligned) with the requisite compute power.

• Exploiting	the	strlcpy()	call	and	certificate	DER	encoding	properties. A
BGW320-500 manufactured by HUMAX was found to use a serial number in a small
enough integer such that the DER bytes in the certificate contained a NUL byte in a
fixed location. For devices with client certificates installed at manufacture time which
use a serial number stored this way, it is possible to use a fixed set of bytes as a
placeholder for the entire certificate, nullifying the entropy otherwise incorporated
into the key. This was verified on another similar device using a proof of concept
decrypt tool:

decrypt <MODEL NUMBER> \
 <WIFI PASSCODE> \
 <BOARD ID> \
 "$(python -c 'import
base64;print(base64.b64encode(bytes.fromhex("308203d5308202bda0030201020209" + "0"
* 1940)).decode("utf-8"))')" \
 <ENCRYPTED SECRET>
The 15-byte sequence “308203d5308202bda0030201020209” is straight from a HUMAX-
generated certificate on a BGW320-500 gateway, and starts with a DER SEQUENCE (3082)
tag (length 981 - 03d5). The remaining 1940 characters are zeros, corresponding to the NUL-
padded (due to the strlcpy()) byte array fed into the argon2i hash function (the full size of
the buffer is still used). We can check our math: 1940/2 (hex digits) is 970, and the 15-byte
header gives us a total size of 985, the on-disk size of the client certificate (subtract 4 bytes
for the initial sequence tag header, and you’re left with 981).

In the event the serial number is not stored in this format, the NUL may come in a different
position with some entropy offered by the bytes comprising the certificate (up until a NUL
byte is encountered). However, in this case, the entire amount of entropy incorporated into
the hash depends on the entropy used to source the serial number, as it is the first non-fixed
field in the certificate after the initial sequence tag. If the serial number is found to be
generated in a predictable way – such as sequential/incremental generator – it would be
possible to compute a lookup table in a very reasonable amount of space to “recover” the
appropriate certificate material and bypass encryption no matter the length of the bytes
representing the serial number. This could be proven by obtaining certificates from several
devices by the same manufacturer and comparing their serial numbers. Otherwise, one may
choose to use precomputed lookup tables that search for a NUL in the first 5-6 bytes of the
certificate, and resort to brute forcing methods within reasonable limits depending on

available computing resources (however, at a certain point it may make more sense to just
brute force the 8-byte salt itself).

A	special	thanks	to	Royce	Williams	(twitter:	@TychoTithonus)	and	Sam	“Chick3nman”	
Croley	(twitter:	@Chick3nman512)	of	the	Hashcat	team	for	their	advice	during	analysis.
Thus, the answer is yes: It	is	possible	to	recover	the	plaintext	remote	administration	
password	and	pin	for	the	device,	as	well	as	the	SIP	and	ISP	CWMP	passwords	used	
for	the	particular	customer	over	the	Internet	if	they	are	encrypted, though with
varying degrees of difficulty, as depicted by this chart:

(right click/secondary select and open in a new tab to view
larger)

It’s worth noting that if the certificate is known by anyone other than the ISP or the
subscriber, the LAN should be assumed compromised as well. If the client certificate is

shared with the ISP, the ISP would also have control over the remote administration
password, WiFi access code, etc. (however, some of this information, like the WiFi access
code, is already shared with certain ISPs in their cloud portals). In remote work scenarios
where the ISP holds this information, an organization’s attack surface includes the ISP of the
home user. Subscribers should act as if the LAN is tainted if the web administration portal is
Internet-facing anyway, as the plaintext WiFi password is obtainable by downloading and
deobfuscating /etc/config.cfg, which is trivial. Changing the WiFi password is also
recommended.

Vulnerability 2: NULL pointer
dereference
Mitigation:	Disable	remote	access,	or	firewall	the	remote	access	ports	from	the	
Internet.	
Note:	No	CVE	was	filed	for	this	issue.
The muhttpd server receives HTTP requests on a non-blocking socket. Socket connections
are accept()ed and fed to a fork()ed process to execute. When data is received, the server
reads in a loop until a sequence of two carriage return/newline characters are received
(read_request). Processing is then handed off to another method (do_request) which
attempts to parse the request method, uri, filename, and headers.

Injecting a NULL byte into the request steam will cause the request process (forked from the
server process) to segfault:

http:

echo -n "GET a \x00\n\n" | nc serverip 80

OR (due to echo compatibility between shells/environments)

echo 474554206120000a0a | xxd -r -p | nc 192.168.1.254 80

https:

(echo -n "GET a \x00\n\n"; cat) | openssl s_client -host serverip -port 443

OR

(echo 474554206120000a0a | xxd -r -p; cat) | openssl s_client -host serverip -port
443
This problem manifests when parsing the request protocol (HTTP/1.0, for example)
in request.c#do_request. The call to strpbrk can return NULL if the string terminates
before a token is found, which would be the case if a NUL byte is injected into the request
stream sent to the server. The end result is a NULL value for p, followed by an increment to
address 0x00000001 and a dereference of p to check for ‘\r’ or ‘\n’, which causes the
segfault:

However, various other parts of the request processing code are also prone to the same
issue. The request processing code of this server should be revisited to ensure processing
robustness, and tested against several edge cases such as this.

Functionally the child fork()ed process crashes, but because of the fork, the main server
continues to listen and accept sockets. Therefore, no DoS-like attacks are likely using this
scenario, though resource exhaustion leading to DoS may be possible with more research.

Vulnerability 3: Buffer over-read when
defanging URLs
Mitigation:	Disable	remote	access,	or	firewall	the	remote	access	ports	from	the	
Internet.	
Note:	No	CVE	was	filed	for	this	issue.
The muhttpd server contains a buffer over-read when dealing with percent-encoded values,
such as %2e (dot). When encountering a percent “%” in the URL, the server attempts to
decode the next two characters without checking the bounds, and while incrementing the
index “n” into the URL buffer “url.” The end result is that if the URL consists of “%” with no
following characters, the decode_url function will read past the URL data and into the parts
of the request buffer containing the HTTP protocol version string (HTTP/1.0, HTTP/1.1,
etc.), as the code previously had parsed the input request stream from the client by injecting
NUL terminators in the original socket data as opposed to allocating new buffers. While not
practically exploitable, safeguards should be made to prevent accessing unintended address
space. The worst an attacker could do with this issue–when combined with vulnerability 1–is
single-level path traversal (../). However, since vulnerability #1 is much more severe as it

allows traversal from the filesystem root, and since fixing vulnerability #1 would also fix this
traversal problem, addressing vulnerability #1 is enough to mitigate the path traversal issue
here (but not completely eliminate the over-read).

Conclusion
Arris and Arris firmware-based devices have a web administration portal running muhttpd
which has three vulnerabilities, one of which is critical, and two of which are presumably
impractical to exploit. The affected server is used in fiber and DSL-based Arris router
products (NVG), as well as whitelabel/OEM products (BGW) by other vendors. The complete
list of affected products is unknown as Arris has declined to comment on the affected
product list.

Internet Service Providers (ISPs) around the world typically loan these routers out to their
collective millions of subscribers, though only up to 19,000 have been visible on the public
Internet. Since the firmware is widespread and every ISP manages their own firmware
updates independently, it’s likely that this issue will persist for years. While the majority of
devices disclosed in this advisory through public searches are now patched, it is unlikely the
search contains every exposed device, due to per-ISP filtering, transient network errors from
Internet scanning engines, and differences in fingerprinting methodologies that the search
query may have missed.

Though no evidence of active exploitation exists, it is best to create an action plan that
assumes a subscriber (residential or commercial) has been compromised due to the length
of time the vulnerability has existed. Subscribers can mitigate any potential future impact by
limiting access to the administration portal (typically at http(s)://192.168.1.254/) on the LAN
and WAN (e.g., by placing untrusted guests on a separate guest network without the
administration portal exposed, and by disabling the ability to access the portal from the
Internet).

