
I see what you did there: A look at the

CloudMensis macOS spyware

Previously unknown macOS malware uses cloud storage as its C&C channel and to

exfiltrate documents, keystrokes, and screen captures from compromised Macs

In April 2022, ESET researchers discovered a previously unknown macOS

backdoor that spies on users of the compromised Mac and exclusively uses

public cloud storage services to communicate back and forth with its

operators. Following analysis, we named it CloudMensis. Its capabilities

clearly show that the intent of its operators is to gather information from

the victims’ Macs by exfiltrating documents, keystrokes, and screen

captures.

Apple has recently acknowledged the presence of spyware targeting users

of its products and is previewing Lockdown Mode on iOS, iPadOS and

macOS, which disables features frequently exploited to gain code execution

and deploy malware. Although not the most advanced malware,

CloudMensis may be one of the reasons some users would want to enable

this additional defense. Disabling entry points, at the expense of a less fluid

user experience, sounds like a reasonable way to reduce the attack surface.

This blogpost describes the different components of CloudMensis and their

inner workings.

CloudMensis overview

CloudMensis is malware for macOS developed in Objective-C. Samples we

analyzed are compiled for both Intel and Apple silicon architectures. We still

do not know how victims are initially compromised by this threat. However,

we understand that when code execution and administrative privileges are

gained, what follows is a two-stage process (see Figure 1), where the first

stage downloads and executes the more featureful second stage.

Interestingly, this first-stage malware retrieves its next stage from a cloud

storage provider. It doesn’t use a publicly accessible link; it includes an
access token to download the MyExecute file from the drive. In the sample

we analyzed, pCloud was used to store and deliver the second stage.

Figure 1. Outline of how CloudMensis uses cloud storage services

Artifacts left in both components suggest they are
called execute and Client by their authors, the former being the

downloader and the latter the spy agent. Those names are found both in

the objects’ absolute paths and ad hoc signatures.

Figure 2. Partial strings and code signature from the downloader component, execute

Figure 3. Partial strings and code signature from the spy agent component, Client

Figures 2 and 3 also show what appear to be internal names of the
components of this malware: the project seems to be called BaD and

interestingly resides in a subdirectory named LeonWork.

Further, v29 suggests this sample is version 29, or perhaps 2.9. This version

number is also found in the configuration filename.

The downloader component

The first-stage malware downloads and installs the second-stage malware

as a system-wide daemon. As seen in Figure 4, two files are written to disk:

1. /Library/WebServer/share/httpd/manual/WindowServer: the
second-stage Mach-O executable, obtained from the pCloud drive

2. /Library/LaunchDaemons/.com.apple.WindowServer.plist: a
property list file to make the malware persist as a system-wide daemon

At this stage, the attackers must already have administrative privileges

because both directories can only be modified by the root user.

Figure 4. CloudMensis downloader installing the second stage

Cleaning up after usage of a Safari exploit

The first-stage component includes an interesting method
called removeRegistration that seems to be present to clean up after a

successful Safari sandbox escape exploit. A first glance at this method is a

bit puzzling considering that the things it does seem unrelated: it deletes a
file called root from the EFI system partition (Figure 5), sends an XPC

message to speechsynthesisd (Figure 6), and deletes files from the

Safari cache directory. We initially thought the purpose
of removeRegistration was to uninstall previous versions of

CloudMensis, but further research showed that these files are used to

launch sandbox and privilege escalation exploits from Safari while abusing

four vulnerabilities. These vulnerabilities were discovered

and well documented by Niklas Baumstark and Samuel Groß in 2017. All

four were patched by Apple the same year, so this distribution technique is

probably not used to install CloudMensis anymore. This could explain why

this code is no longer called. It also suggests that CloudMensis may have

been around for many years.

Figure 5. Decompiled code showing CloudMensis mounting the EFI partition

Figure 6. Sending an XPC message to speechsynthesisd

The spy agent component

The second stage of CloudMensis is a much larger component, packed with

a number of features to collect information from the compromised Mac.

The intention of the attackers here is clearly to exfiltrate documents,

screenshots, email attachments, and other sensitive data.

CloudMensis uses cloud storage both for receiving commands from its

operators and for exfiltrating files. It supports three different providers:

pCloud, Yandex Disk, and Dropbox. The configuration included in the

analyzed sample contains authentication tokens for pCloud and Yandex

Disk.

Configuration

One of the first things the CloudMensis spy agent does is load its

configuration. This is a binary structure that is 14,972 bytes long. It is stored

on disk
at ~/Library/Preferences/com.apple.iTunesInfo29.plist,

encrypted using a simple XOR with a generated key (see the Custom

encryption section).

If this file does not already exist, the configuration is populated with default

values hardcoded in the malware sample. Additionally, it also tries to import

values from what seem to be previous versions of the CloudMensis

configuration at:

• ~/Library/Preferences/com.apple.iTunesInfo28.plist

• ~/Library/Preferences/com.apple.iTunesInfo.plist

The configuration contains the following:

• Which cloud storage providers to use and authentication tokens

• A randomly generated bot identifier

• Information about the Mac

• Paths to various directories used by CloudMensis

• File extensions that are of interest to the operators

The default list of file extensions found in the analyzed sample, pictured in

Figure 7, shows that operators are interested in documents, spreadsheets,

audio recordings, pictures, and email messages from the victims’ Macs. The

most uncommon format is perhaps audio recordings using the Adaptive
Multi-Rate codec (using the .amrand .3ga extensions), which is specifically

designed for speech compression. Other interesting file extensions in this
list are .hwp and .hwpx files, which are documents for Hangul Office (now

Hancom Office), a popular word processor among Korean speakers.

Figure 7. File extensions found in the default configuration of CloudMensis

Custom encryption

CloudMensis implements its own encryption function that its authors
call FlowEncrypt. Figure 8 shows the disassembled function. It takes a

single byte as a seed and generates the rest of the key by performing a

series of operations on the most recently generated byte. The input is

XORed with this keystream. Ultimately the current byte’s value will be the

same as one of its previous values, so the keystream will loop. This means

that even though the cipher seems complex, it can be simplified to an XOR

with a static key (except for the first few bytes of the keystream, before it

starts looping).

Figure 8. Disassembled FlowEncrypt method

Bypassing TCC

Since the release of macOS Mojave (10.14) in 2018, access to some sensitive

inputs, such as screen captures, cameras, microphones and keyboard

events, are protected by a system called TCC, which stands for

Transparency, Consent, and Control. When an application tries to access

certain functions, macOS prompts the user whether the request from the

application is legitimate, who can grant or refuse access. Ultimately, TCC

rules are saved into a database on the Mac. This database is protected by

System Integrity Protection (SIP) to ensure that only the TCC daemon can

make any changes.

CloudMensis uses two techniques to bypass TCC (thus avoiding prompting

the user), thereby gaining access to the screen, being able to scan

removable storage for documents of interest, and being able to log
keyboard events. If SIP is disabled, the TCC database (TCC.db) is no longer

protected against tampering. Thus, in this case CloudMensis add entries to

grant itself permissions before using sensitive inputs. If SIP is enabled but

the Mac is running any version of macOS Catalina earlier than 10.15.6,
CloudMensis will exploit a vulnerability to make the TCC daemon (tccd)

load a database CloudMensis can write to. This vulnerability is known

as CVE-2020–9934and was reported and described by Matt Shockley in

2020.

The exploit first creates a new database under ~/Library/Application

Support/com.apple.spotlight/Library/Application

Support/com.apple.TCC/ unless it was already created, as shown in

Figure 9.

Figure 9. Checking it the illegitimate TCC database file already exists

Then, it sets the HOME environment variable to ~/Library/Application

Support/com.apple.spotlightusing launchctl setenv, so that

the TCC daemon loads the alternate database instead of the legitimate one.
Figure 10 shows how it is done using NSTask.

Figure 10. Mangling the HOME environment variable used

by launchd with launchctl and restarting tccd

Communication with the C&C server

To communicate back and forth with its operators, the CloudMensis

configuration contains authentication tokens to multiple cloud service

providers. Each entry in the configuration is used for a different purpose. All

of them can use any provider supported by CloudMensis. In the analyzed

sample, Dropbox, pCloud, and Yandex Disk are supported.

The first store, called CloudCmd by the malware authors according to the

global variable name, is used to hold commands transmitted to bots and
their results. Another, which they call CloudData, is used to exfiltrate

information from the compromised Mac. A third one, which they
call CloudShell, is used for storing shell command output. However, this

last one uses the same settings as CloudCmd.

Before it tries fetching remote files, CloudMensis first uploads an RSA-

encrypted report about the compromised Mac
to /January/ on CloudCmd. This report includes shared secrets such as a

bot identifier and a password to decrypt to-be-exfiltrated data.

Then, to receive commands, CloudMensis fetches files under the following
directory in the CloudCmd storage:/Febrary/<bot_id>/May/. Each file

is downloaded, decrypted, and dispatched to
the AnalizeCMDFileNamemethod. Notice how

both February and Analyze are spelled incorrectly by the malware authors.

The CloudData storage is used to upload larger files requested by the

operators. Before the upload, most files are added to a password-protected

ZIP archive. Generated when CloudMensis is first launched, the password is

kept in the configuration, and transferred to the operators in the initial

report.

Commands

There are 39 commands implemented in the analyzed CloudMensis sample.

They are identified by a number between 49 and 93 inclusive, excluding 57,

78, 87, and 90 to 92. Some commands require additional arguments.

Commands allow the operators to perform actions such as:

• Change values in the CloudMensis configuration: cloud storage providers and
authentication tokens, file extensions deemed interesting, polling frequency of
cloud storage, etc.

• List running processes

• Start a screen capture

• List email messages and attachments

• List files from removable storage

• Run shell commands and upload output to cloud storage

• Download and execute arbitrary files

Figure 11 shows command with identifier 84, which lists all jobs loaded
by launchd and uploads the results now or later, depending on the value

of its argument.

Figure 11. Command 84 runs launchctl list to get launchd jobs

Figure 12 shows a more complex example. Command with identifier 60 is

used to launch a screen capture. If the first argument is 1, the second

argument is a URL to a file that will be downloaded, stored, and executed
by startScreenCapture. This external executable file will be saved

as windowserver in the Library folder of FaceTime’s sandbox container.

If the first argument is zero, it will launch the existing file previously

dropped. We could not find samples of this screen capture agent.

Figure 12. Command 60: Start a screen capture

It’s interesting to note that property list files to make launchd start new

processes, such as com.apple.windowServer.plist, are not persistent:

they are deleted from disk after they are loaded by launchd.

Metadata from cloud storage

Metadata from the cloud storages used by CloudMensis reveals interesting

details about the operation. Figure 13 shows the tree view of the storage

used by CloudMensis to send the initial report and to transmit commands

to the bots as of April 22nd, 2022.

Figure 13. Tree view of the directory listing from the CloudCmd storage

This metadata gave partial insight into the operation and helped draw a

timeline. First, the pCloud accounts were created on January 19th, 2022. The

directory listing from April 22nd shows that 51 unique bot identifiers created

subdirectories in the cloud storage to receive commands. Because these

directories are created when the malware is first launched, we can use their

creation date to determine the date of the initial compromise, as seen in

Figure 14.

Figure 14. Subdirectory creation dates under /Febrary (sic)

This chart shows a spike of compromises in early March 2022, with the first

being on February 4th. The last spike may be explained by sandboxes

running CloudMensis, once it was uploaded to VirusTotal.

Conclusion

CloudMensis is a threat to Mac users, but its very limited distribution

suggests that it is used as part of a targeted operation. From what we have

seen, operators of this malware family deploy CloudMensis to specific

targets that are of interest to them. Usage of vulnerabilities to work around

macOS mitigations shows that the malware operators are actively trying to

maximize the success of their spying operations. At the same time, no

undisclosed vulnerabilities (zero-days) were found to be used by this group

during our research. Thus, running an up-to-date Mac is recommended to

avoid, at least, the mitigation bypasses.

We still do not know how CloudMensis is initially distributed and who the

targets are. The general quality of the code and lack of obfuscation shows

the authors may not be very familiar with Mac development and are not so

advanced. Nonetheless a lot of resources were put into making

CloudMensis a powerful spying tool and a menace to potential targets.

IoCs

Public key

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsGRYSEVvwmfBFNBjOz+Q

pax5rzWf/LT/yFUQA1zrA1njjyIHrzphgc9tgGHs/7tsWp8e5dLkAYsVGhWAPsjy

1gx0drbdMjlTbBYTyEg5Pgy/5MsENDdnsCRWr23ZaOELvHHVV8CMC8Fu4Wbaz80L

Ghg8isVPEHC8H/yGtjHPYFVe6lwVr/MXoKcpx13S1K8nmDQNAhMpT1aLaG/6Qijh

W4P/RFQq+Fdia3fFehPg5DtYD90rS3sdFKmj9N6MO0/WAVdZzGuEXD53LHz9eZwR

9Y8786nVDrlma5YCKpqUZ5c46wW3gYWi3sY+VS3b2FdAKCJhTfCy82AUGqPSVfLa

mQIDAQAB

-----END PUBLIC KEY-----

Paths used

• /Library/WebServer/share/httpd/manual/WindowServer

• /Library/LaunchDaemons/.com.apple.WindowServer.plist

• ~/Library/Containers/com.apple.FaceTime/Data/Library/window
server

• ~/Library/Containers/com.apple.Notes/Data/Library/.CFUserTe
xtDecoding

• ~/Library/Containers/com.apple.languageassetd/loginwindow

• ~/Library/Application
Support/com.apple.spotlight/Resources_V3/.CrashRep

MITRE ATT&CK techniques

This table was built using version 11 of the MITRE ATT&CK framework.

Tactic ID Name Description

Persistence T1543.004

Create or Modify
System Process:
Launch Daemon

The CloudMensis downloader installs the
second stage as a system-wide daemon.

Defense
Evasion T1553

Subvert Trust
Controls CloudMensis tries to bypass TCC if possible.

Collection

T1560.002

Archive Collected
Data: Archive via
Library

Archive Collected Data: Archive via Library
CloudMensis uses SSZipArchive to create a
password-protected ZIP archive of data to
exfiltrate.

T1056.001

Input Capture:
Keylogging

CloudMensis can capture and exfiltrate
keystrokes.

Tactic ID Name Description

T1113 Screen Capture CloudMensis can take screen captures and
exfiltrate them.

T1005

Data from Local
System

CloudMensis looks for files with specific
extensions.

T1025

Data from
Removable
Media

CloudMensis can search removable media for
interesting files upon their connection.

T1114.001

Email Collection:
Local Email
Collection

CloudMensis searches for interesting email
messages and attachments from Mail.

Command
and Control

T1573.002

Encrypted
Channel:
Asymmetric
Cryptography

The CloudMensis initial report is encrypted
with a public RSA-2048 key.

T1573.001

Encrypted
Channel:
Symmetric
Cryptography

CloudMensis encrypts exfiltrated files using
password-protected ZIP archives.

T1102.002

Web Service:
Bidirectional
Communication

CloudMensis uses Dropbox, pCloud, or
Yandex Drive for C&C communication.

Exfiltration T1567.002

Exfiltration Over
Web Service:
Exfiltration to
Cloud Storage

CloudMensis exfiltrates files to Dropbox,
pCloud, or Yandex Drive.

